Influence of oxygen partial pressure in In-Sn-Ga-O thin-film transistors at a low temperature

被引:32
|
作者
Oh, Changyong [1 ]
Jang, Hyunjae [1 ]
Kim, Hyeong Wook [1 ]
Jung, Hyunjae [1 ]
Park, Hyungryul [2 ]
Cho, Johann [2 ]
Kim, Bo Sung [1 ]
机构
[1] Korea Univ, Dept Appl Phys, Sejong 30019, South Korea
[2] Samsung Corning Adv Glass, R&D Grp, Gumi 730735, South Korea
关键词
In-Sn-Ga-O (ITGO); Thin-film transistor (TFT); Oxygen partial pressure; Low temperature; Sputtering; AMORPHOUS OXIDE SEMICONDUCTOR; CARRIER TRANSPORT; HIGH-PERFORMANCE;
D O I
10.1016/j.jallcom.2019.07.091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We examined the electrical properties of low-temperature-processed top-gate In-Sn-Ga-O (ITGO) thin-film transistors (TFTs) by rf/dc-sputtering with different oxygen partial pressures (PO2). As PO2 changed from 0 to 50.0%, the ITGO TFT showed various electrical characteristics such as from conductor-like behavior to transfer curves with positive-shifted threshold voltages (Vth). The TFT at PO2 of 25.0% afforded the best performance, exhibiting field-effect mobility of 14.8 cm(2)V(-1)s(-1), Vth of 0.56 V, and subthreshold slope of 0.16 Vdec(-1) with reasonable electrical stability for gate bias stress. From various analysis techniques, we found that the TFT characteristics and the electrical stability strongly depended on the metal-oxygen surface states of the ITGO films influenced by PO2 during the sputtering process. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [1] Stability Improvement of In-Sn-Ga-O Thin-Film Transistors at Low Annealing Temperatures
    Jeong, Hyun-Jun
    Ok, Kyung-Chul
    Park, Jozeph
    Lim, Junhyung
    Cho, Johann
    Park, Jin-Seong
    IEEE ELECTRON DEVICE LETTERS, 2015, 36 (11) : 1160 - 1162
  • [2] Effects of Deposition Power and Oxygen Partial Pressure on Low-Temperature-Processed In-Ga-Zn-O Thin-Film Transistors
    Ryu, Sang Ouk
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2011, 6 (03) : 283 - 287
  • [3] Room-Temperature Forming of Ga-Sn-O Film for Thin-Film Transistors
    Takagi, Ryo
    Umeda, Kenta
    Kimura, Mutsumi
    Matsuda, Tokiyoshi
    2017 IEEE INTERNATIONAL MEETING FOR FUTURE OF ELECTRON DEVICES, KANSAI (IMFEDK), 2017, : 68 - 69
  • [4] Effect of oxygen partial pressure on the performance of homojunction amorphous In-Ga-Zn-O thin-film transistors
    Li, Zhi-Yue
    Song, Shu-Mei
    Wang, Wan-Xia
    Gong, Jian-Hong
    Tong, Yang
    Dai, Ming-Jiang
    Lin, Song-Sheng
    Yang, Tian-Lin
    Sun, Hui
    NANOTECHNOLOGY, 2023, 34 (02)
  • [5] Amorphous Sn-Ga-Zn-O channel thin-film transistors
    Ogo, Youichi
    Nomura, Kenji
    Yanagi, Hiroshi
    Kamiya, Toshio
    Hirano, Masahiro
    Hosono, Hideo
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (08): : 1920 - 1924
  • [6] Combinatorial Synthesis of In-Ga-Sn-O Channel Transparent Thin-film Transistors
    Moon, Joon Chul
    Yoon, Joonseok
    Ju, Honglyoul
    Park, Changwoo
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 56 (06) : 1843 - 1846
  • [7] The Influence of Oxygen High-Pressure Annealing on the Performance and Bias Instability of Amorphous Ge-In-Ga-O Thin-Film Transistors
    Ahn, Byung Du
    Kim, Hyun-Suk
    Rim, You Seung
    Park, Jin-Seong
    Kim, Hyun Jae
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (12) : 4132 - 4136
  • [8] Effect of oxygen partial pressure on the density of states of amorphous InGaZnO thin-film transistors
    Li, Jun
    Huang, Chuan-Xin
    Zhu, Wen-Qing
    Zhang, Jian-Hua
    Jiang, Xue-Yin
    Zhang, Zhi-Lin
    Li, Xi-Feng
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2016, 122 (10):
  • [9] Effect of oxygen partial pressure on the density of states of amorphous InGaZnO thin-film transistors
    Jun Li
    Chuan-Xin Huang
    Wen-Qing Zhu
    Jian-Hua Zhang
    Xue-Yin Jiang
    Zhi-Lin Zhang
    Xi-Feng Li
    Applied Physics A, 2016, 122
  • [10] Operating Temperature Trends in Amorphous In-Ga-Zn-O Thin-Film Transistors
    Hoshino, Ken
    Wager, John F.
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (08) : 818 - 820