QUASISYMMETRIC UNIFORMIZATION AND HEAT KERNEL ESTIMATES

被引:7
|
作者
Murugan, Mathav [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quasisymmetry; uniformization; circle packing; sub-Gaussian estimate; Harnack inequality; PLANAR GRAPHS; HARNACK INEQUALITIES; HARMONIC-FUNCTIONS; VOLUME GROWTH; RANDOM-WALKS; STABILITY; BOUNDARY; CAPACITY; SPACES;
D O I
10.1090/tran/7713
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the circle packing embedding in R-2 of a one-ended, planar triangulation with polynomial growth is quasisymmetric if and only if the simple random walk on the graph satisfies sub-Gaussian heat kernel estimate with spectral dimension two. Our main results provide a new family of graphs and fractals that satisfy sub-Gaussian estimates and Harnack inequalities.
引用
收藏
页码:4177 / 4209
页数:33
相关论文
共 50 条