Terahertz plasmonic composites

被引:14
|
作者
Nemat-Nasser, Syrus C.
Amirkhizi, Alireza V.
Padilla, Willie J.
Basov, Dimitri N.
Nemat-Nasser, Sia
Bruzewicz, Derek
Whitesides, George
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, Ctr Excellence Adv Mat, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1103/PhysRevE.75.036614
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dielectric response of a polymer matrix composite can be substantially modified and tuned within a broad frequency band by integrating within the material an artificial plasmon medium composed of periodically distributed, very thin, electrically conducting wires. In the microwave regime, such plasmon/polymer composites have been studied analytically, computationally, and experimentally. This work reports the design, fabrication, and characterization of similar composites for operation at terahertz frequencies. Such composites require significant reduction in the thickness and spacing of the wires. We used numerical modeling to design artificial effective plasmonic media with turn-on frequencies in the terahertz range. Prototype samples were produced by lithographically embedding very thin gold strips into a PDMS [poly(dimethylsiloxane)] matrix. These samples were characterized with a Fourier-transform infrared interferometer using the frequency-dependent transmission and Kramers-Kronig relations to determine the electromagnetic properties. We report the characterization results for a sample, demonstrating excellent agreement between theory, computer design, and experiment. To our knowledge this is the first demonstration of the possibility of creating composites with tuned dielectric response at terahertz frequencies.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Terahertz plasmonic imaging
    Maraghechi, P.
    Straatsma, C.
    Elezzabi, A. Y.
    [J]. ULTRAFAST PHENOMENA IN SEMICONDUCTORS AND NANOSTRUCTURE MATERIALS XIV, 2010, 7600
  • [2] Terahertz Plasmonic Technology
    Shur, Michael S.
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (11) : 12752 - 12763
  • [3] Terahertz response of plasmonic nanoparticles: Plasmonic Zeeman Effect
    Marquez, A.
    Esquivel-Sirvent, R.
    [J]. OPTICS EXPRESS, 2020, 28 (26): : 39005 - 39016
  • [4] Plasmonic terahertz detectors for biodetection
    Pala, N.
    Shur, M. S.
    [J]. ELECTRONICS LETTERS, 2008, 44 (24) : 1391 - 1392
  • [5] Broadband terahertz plasmonic multiplexers
    Dong, J.
    Tomasino, A.
    Balistreri, G.
    You, P.
    Vorobiov, A.
    Chareete, E.
    Drogoff, B. Le
    Chaker, M.
    Yurtsever, A.
    Stivala, S.
    Vincenti, M. A.
    De Angelis, C.
    Kip, D.
    Azana, J.
    Morandotti, R.
    [J]. 2023 48TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, IRMMW-THZ, 2023,
  • [6] Terahertz plasmonic Bessel beamformer
    Monnai, Yasuaki
    Jahn, David
    Withayachumnankul, Withawat
    Koch, Martin
    Shinoda, Hiroyuki
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (02)
  • [7] Graphene plasmonic terahertz lamps
    Li, Yuyu
    Paiella, Roberto
    [J]. 2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [8] Plasmonic FET Terahertz Spectrometer
    Liu, Xueqing
    Ytterdal, Trond
    Shur, Michael
    [J]. IEEE ACCESS, 2020, 8 : 56039 - 56044
  • [9] Terahertz superconducting plasmonic crystals
    Tian, Zhen
    Han, Jiaguang
    Gu, Jianqiang
    He, Mingxia
    Xing, Qirong
    Zhang, Weili
    [J]. Chinese Optics Letters, 2011, 9 (SUPPL. 1)
  • [10] Terahertz Plasmonic Random Metamaterial
    Elezzabi, A. Y.
    Chau, K. J.
    Maraghechi, P.
    Baron, C.
    [J]. 2008 33RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES, VOLS 1 AND 2, 2008, : 159 - 161