Secure sound classification: Gaussian mixture models

被引:0
|
作者
Shashanka, Madhusudana V. S. [1 ]
Smaragdis, Paris [1 ]
机构
[1] Boston Univ, Hearing Res Ctr, Boston, MA 02215 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose secure protocols for gaussian mixture-based sound recognition. The protocols we describe allow varying levels of security between two collaborating parties. The case we examine consists of one party (Alice) providing data and other party (Bob) providing a recognition algorithm. We show that it is possible to have Bob apply his algorithm on Alice's data in such a way that the data and the recognition results will not be revealed to Bob thereby guaranteeing Alice's data privacy. Likewise we show that it is possible to organize the collaboration so that a reverse engineering of Bob's recognition algorithm cannot be performed by Alice. We show how gaussian mixtures can be implemented in a secure manner using secure computation primitives implementing simple numerical operations and we demonstrate the process by showing how it can yield identical results to a non-secure computation while maintaining privacy.
引用
收藏
页码:3539 / 3542
页数:4
相关论文
共 50 条
  • [1] Combustion Sound Classification Employing Gaussian Mixture Models
    Lupu, E.
    Ghiurcau, M. V.
    Hodor, V.
    Emerich, S.
    [J]. PROCEEDINGS OF 2010 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS (AQTR 2010), VOLS. 1-3, 2010,
  • [2] Evolving Gaussian Mixture Models for Classification
    Reichhuber, Simon
    Tomforde, Sven
    [J]. ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3, 2022, : 964 - 974
  • [3] Comparison of Gaussian mixture and linear mixture models for classification of hyperspectral data
    Beaven, SG
    Stein, D
    Hoff, LE
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1597 - 1599
  • [4] Discriminative Model Selection for Gaussian Mixture Models for Classification
    Liu, Xiao-Hua
    Liu, Cheng-Lin
    [J]. 2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 62 - 66
  • [5] Semantic Scene Classification with Generalized Gaussian Mixture Models
    Elguebaly, Tarek
    Bouguila, Nizar
    [J]. IMAGE ANALYSIS AND RECOGNITION (ICIAR 2015), 2015, 9164 : 159 - 166
  • [6] Classification and compression of ICEGS using gaussian mixture models
    Coggins, R
    Jabri, M
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING VII, 1997, : 226 - 235
  • [7] Using Wavelets and Gaussian Mixture Models for Audio Classification
    Chuan, Ching-Hua
    Vasana, Susan
    Asaithambi, Asai
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2012, : 421 - 426
  • [8] Gaussian Mixture Models for Probabilistic Classification of Breast Cancer
    Prabakaran, Indira
    Wu, Zhengdong
    Lee, Changgun
    Tong, Brian
    Steeman, Samantha
    Koo, Gabriel
    Zhang, Paul J.
    Guvakova, Marina A.
    [J]. CANCER RESEARCH, 2019, 79 (13) : 3492 - 3502
  • [9] Emotional speech classification using Gaussian mixture models
    Ververidis, D
    Kotropoulos, C
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 2871 - 2874
  • [10] Distribution based classification using Gaussian Mixture Models
    Gudnason, J
    Brookes, M
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 4159 - 4159