On one modulus inequality for mappings with finite length distortion

被引:0
|
作者
Sevost'yanov, E. A. [1 ]
机构
[1] Ukrainian Natl Acad Sci, Inst Appl Math & Mech, Donetsk, Ukraine
关键词
Quasiconformal Mapping; Topological Index; Borel Function; Normal Domain; Quasiregular Mapping;
D O I
10.1007/s11253-009-0242-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Vaisala inequality, which is well known in the theory of quasilinear mappings, is extended to the class of mappings with finite length distortion.
引用
收藏
页码:810 / 820
页数:11
相关论文
共 50 条
  • [1] On one modulus inequality for mappings with finite length distortion
    E. A. Sevost’yanov
    Ukrainian Mathematical Journal, 2009, 61 : 810 - 820
  • [2] The Vaisala inequality for mappings with finite length distortion
    Sevost'yanov, E.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (1-3) : 91 - 101
  • [3] Mappings with finite length distortion
    Martio, O
    Ryazanov, V
    Srebro, U
    Yakubov, E
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 93 (1): : 215 - 236
  • [4] Mappings with finite length distortion
    O. Martio
    V. Ryazanov
    U. Srebro
    E. Yakubov
    Journal d’Analyse Mathématique, 2004, 93 : 215 - 236
  • [5] Mappings of finite distortion: Capacity and modulus inequalities
    Koskela, Pekka
    Onninen, Jani
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 599 : 1 - 26
  • [6] Mappings of finite distortion: The sharp modulus of continuity
    Koskela, P
    Onninen, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) : 1905 - 1920
  • [7] Modulus of continuity for quasiregular mappings with finite distortion extension
    Zapadinskaya, Aleksandra
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2008, 33 (02) : 373 - 385
  • [8] A note on mappings of finite distortion: The sharp modulus of continuity
    Onninen, J
    Zhong, X
    MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (02) : 329 - 335
  • [9] On isolated singularities of mappings with finite length distortion
    Gutlyanskiĭ V.
    Ryazanov V.
    Salimov R.
    Sevost’yanov E.
    Journal of Mathematical Sciences, 2023, 276 (5) : 652 - 669
  • [10] Compactness theory and mappings with finite length distortion
    Sevost'yanov E.A.
    Siberian Advances in Mathematics, 2009, 19 (3) : 179 - 191