Relaxed Poisson cure rate models

被引:10
|
作者
Rodrigues, Josemar [1 ]
Cordeiro, Gauss M. [2 ]
Cancho, Vicente G. [1 ]
Balakrishnan, N. [3 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Appl Math & Stat, Sao Carlos, SP, Brazil
[2] Univ Fed Pernambuco, Dept Stat, Recife, PE, Brazil
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
关键词
Bayesian inference; Fractional Poisson distribution; Geometric cure rate model; Mittag-Leffler relaxation function; Poisson cure rate model; Relaxed Poisson cure rate model; MELANOMA;
D O I
10.1002/bimj.201500051
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, 1996) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, 2003). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, 2005) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., 2009a). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented.
引用
收藏
页码:397 / 415
页数:19
相关论文
共 50 条
  • [1] Destructive weighted Poisson cure rate models
    Josemar Rodrigues
    Mário de Castro
    N. Balakrishnan
    Vicente G. Cancho
    Lifetime Data Analysis, 2011, 17 : 333 - 346
  • [2] Destructive weighted Poisson cure rate models
    Rodrigues, Josemar
    de Castro, Mario
    Balakrishnan, N.
    Cancho, Vicente G.
    LIFETIME DATA ANALYSIS, 2011, 17 (03) : 333 - 346
  • [3] A weighted Poisson distribution and its application to cure rate models
    Balakrishnan, N.
    Koutras, M. V.
    Milienos, F. S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (17) : 4297 - 4310
  • [4] COM-Poisson cure rate survival models and an application to a cutaneous melanoma data
    Rodrigues, Josemar
    de Castro, Mario
    Cancho, Vicente G.
    Balakrishnan, N.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (10) : 3605 - 3611
  • [5] Destructive weighted Poisson cure rate models with bivariate random effects: Classical and Bayesian approaches
    Gallardo, Diego I.
    Bolfarine, Heleno
    Pedroso-de-Lima, Antonio Carlos
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 98 : 31 - 45
  • [6] A Bayesian analysis of the Conway–Maxwell–Poisson cure rate model
    Vicente G. Cancho
    Mário de Castro
    Josemar Rodrigues
    Statistical Papers, 2012, 53 : 165 - 176
  • [7] Cure rate models: a unified approach
    Yin, GS
    Ibrahim, JG
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (04): : 559 - 570
  • [8] New Cure Rate Survival Models Generated by Poisson Distribution and Different Regression Structures with Applications to Cancer Data Set
    Esmailian, Mahdy
    Azimi, Reza
    Gallardo, Diego I. I.
    Nasiri, Parviz
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [9] A Bayesian analysis of the Conway-Maxwell-Poisson cure rate model
    Cancho, Vicente G.
    de Castro, Mario
    Rodrigues, Josemar
    STATISTICAL PAPERS, 2012, 53 (01) : 165 - 176
  • [10] An EM algorithm for estimating the destructive weighted Poisson cure rate model
    Gallardo, Diego I.
    Bolfarine, Heleno
    Pedroso-de-Lima, Antonio Carlos
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (08) : 1497 - 1515