Ground state solutions for Choquard equations with Hardy potentials and critical nonlinearity

被引:0
|
作者
Guo, Ting [1 ]
Tang, Xianhua [1 ]
Zhang, Qi [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Choquard equations; Pohozaev manifold; Hardy potentials; critical Sobolev exponent;
D O I
10.1080/17476933.2021.1885387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with discussing the ground state solutions of the Choquard equation with the Hardy potentials and critical Sobolev exponent: {-Delta u + (a - mu/vertical bar x vertical bar(2)) u = (I-alpha * F(u))f(u) + vertical bar u vertical bar(2*-2) u, X is an element of R-N \ {0}, u subset of H-1(R-N), where N >= 3, alpha is an element of (0, N), 0 <= mu < <(mu)over bar> := (N-2)(2)/4, I-alpha is the Riesz potential, 2* := 2N/(N - 2) is the critical Sobolev exponent, and f. C(R, R) satisfies neither the usual Ambrosetti-Rabinowitz type condition nor any monotonicity condition. Using some new variational and analytic techniques, we obtain a ground state solution of Poho. z aev type for the given problem.
引用
收藏
页码:1579 / 1597
页数:19
相关论文
共 50 条