UNIVERSAL HALTING TIMES IN OPTIMIZATION AND MACHINE LEARNING

被引:5
|
作者
Sagun, Levent [1 ]
Trogdon, Thomas [2 ]
Lecun, Yann [3 ]
机构
[1] NYU, Dept Math, 550 1St Ave, New York, NY 10012 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] NYU, Dept Comp Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
COVARIANCE MATRICES; COMPUTATIONS; BEHAVIOR; LANCZOS;
D O I
10.1090/qam/1483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present empirical evidence that the halting times for a class of optimization algorithms are universal. The algorithms we consider come from quadratic optimization, spin glasses and machine learning. A universality theorem is given in the case of the quadratic gradient descent flow. More precisely, given an algorithm, which we take to be both the optimization routine and the form of the random landscape, the fluctuations of the halting time of the algorithm follow a distribution that, after centering and scaling, appears invariant under changes in the distribution on the landscape universality is present.
引用
收藏
页码:289 / 301
页数:13
相关论文
共 50 条
  • [1] Universal machine learning for topology optimization
    Chi, Heng
    Zhang, Yuyu
    Tang, Tsz Ling Elaine
    Mirabella, Lucia
    Dalloro, Livio
    Song, Le
    Paulino, Glaucio H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 375
  • [2] Exploring Halting Times for Unconventional Halting Schemes
    Krzyzanska, Katarzyna
    COMPLEX SYSTEMS, 2018, 27 (01): : 85 - 99
  • [3] Characteristics of discrete transfinite time Turing machine models: Halting times, stabilization times, and Normal Form theorems
    Welch, P. D.
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (4-5) : 426 - 442
  • [4] Achieving Universal Fairness in Machine Learning: A Multi-objective Optimization Perspective
    Hu, Zirui
    Zhang, Zheng
    Feng, Wenjun
    Liu, Qi
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2024, 2024, 14885 : 164 - 179
  • [5] RECRUITMENT IN THE TIMES OF MACHINE LEARNING
    Rab-kettler, Karolina
    Lehnervp, Bada
    MANAGEMENT SYSTEMS IN PRODUCTION ENGINEERING, 2019, 27 (02) : 105 - 109
  • [6] Universal activation function for machine learning
    Yuen, Brosnan
    Hoang, Minh Tu
    Dong, Xiaodai
    Lu, Tao
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [7] Machine learning universal bosonic functionals
    Schmidt, Jonathan
    Fadel, Matteo
    Benavides-Riveros, Carlos L.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [8] The universal consistency of extreme learning machine
    Liu, Xia
    Xu, Lin
    NEUROCOMPUTING, 2018, 311 : 176 - 182
  • [9] Universal activation function for machine learning
    Brosnan Yuen
    Minh Tu Hoang
    Xiaodai Dong
    Tao Lu
    Scientific Reports, 11
  • [10] Universal Learning Machine with Genetic Programming
    Re, Alessandro
    Vanneschi, Leonardo
    Castelli, Mauro
    IJCCI: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2019, : 115 - 122