Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning

被引:156
|
作者
Song, Zhigang [1 ]
Zou, Shuangmei [2 ]
Zhou, Weixun [3 ]
Huang, Yong [1 ]
Shao, Liwei [1 ]
Yuan, Jing [1 ]
Gou, Xiangnan [1 ]
Jin, Wei [1 ]
Wang, Zhanbo [1 ]
Chen, Xin [1 ]
Ding, Xiaohui [1 ]
Liu, Jinhong [1 ]
Yu, Chunkai [4 ]
Ku, Calvin [5 ]
Liu, Cancheng [5 ]
Sun, Zhuo [5 ]
Xu, Gang [5 ]
Wang, Yuefeng [5 ]
Zhang, Xiaoqing [5 ]
Wang, Dandan [6 ]
Wang, Shuhao [5 ,7 ]
Xu, Wei [7 ]
Davis, Richard C. [8 ]
Shi, Huaiyin [1 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Dept Pathol, Beijing 100853, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Dept Pathol, Natl Canc Ctr, Natl Clin Res Ctr Canc,Canc Hosp, Beijing 100021, Peoples R China
[3] Peking Union Med Coll Hosp, Dept Pathol, Beijing 100005, Peoples R China
[4] Capital Med Univ, Beijing Shijitan Hosp, Dept Pathol, Beijing 100038, Peoples R China
[5] Thorough Images, Beijing 100102, Peoples R China
[6] Peking Univ, Sch Basic Med Sci, Hosp 3, Dept Pathol,Hlth Sci Ctr, Beijing 100083, Peoples R China
[7] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China
[8] Duke Univ, Med Ctr, Dept Pathol, Durham, NC 27710 USA
基金
中国国家自然科学基金;
关键词
CLASSIFICATION; VALIDATION; ALGORITHM;
D O I
10.1038/s41467-020-18147-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The early detection and accurate histopathological diagnosis of gastric cancer increase the chances of successful treatment. The worldwide shortage of pathologists offers a unique opportunity for the use of artificial intelligence assistance systems to alleviate the workload and increase diagnostic accuracy. Here, we report a clinically applicable system developed at the Chinese PLA General Hospital, China, using a deep convolutional neural network trained with 2,123 pixel-level annotated H&E-stained whole slide images. The model achieves a sensitivity near 100% and an average specificity of 80.6% on a real-world test dataset with 3,212 whole slide images digitalized by three scanners. We show that the system could aid pathologists in improving diagnostic accuracy and preventing misdiagnoses. Moreover, we demonstrate that our system performs robustly with 1,582 whole slide images from two other medical centres. Our study suggests the feasibility and benefits of using histopathological artificial intelligence assistance systems in routine practice scenarios. The early detection and accurate histopathological diagnosis of gastric cancer are essential factors that can help increase the chances of successful treatment. Here, the authors report on a digital pathology tool achieving high performance on a real world test dataset and show that the system can aid pathologists in improving diagnostic accuracy.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning
    Zhigang Song
    Shuangmei Zou
    Weixun Zhou
    Yong Huang
    Liwei Shao
    Jing Yuan
    Xiangnan Gou
    Wei Jin
    Zhanbo Wang
    Xin Chen
    Xiaohui Ding
    Jinhong Liu
    Chunkai Yu
    Calvin Ku
    Cancheng Liu
    Zhuo Sun
    Gang Xu
    Yuefeng Wang
    Xiaoqing Zhang
    Dandan Wang
    Shuhao Wang
    Wei Xu
    Richard C. Davis
    Huaiyin Shi
    [J]. Nature Communications, 11
  • [2] Clinically Applicable Histopathological Diagnosis System for Gastric Cancer Classification Using Bayes-MIL Model
    Zhou, Hangcheng
    Xian, Dongyi
    Huang, Liujing
    Wei, Weiwei
    Liu, Xiangyu
    [J]. LABORATORY INVESTIGATION, 2024, 104 (03) : S867 - S869
  • [3] Histopathological Gastric Cancer Detection on GasHisSDB Dataset Using Deep Ensemble Learning
    Yong, Ming Ping
    Hum, Yan Chai
    Lai, Khin Wee
    Lee, Ying Loong
    Goh, Choon-Hian
    Yap, Wun-She
    Tee, Yee Kai
    [J]. DIAGNOSTICS, 2023, 13 (10)
  • [4] Histopathological Gastric Cancer Detection Using Transfer Learning
    Yong, Ming Ping
    Hum, Yan Chai
    Lai, Khin Wee
    Goh, Choon Hian
    Yap, Wun-She
    Tee, Yee Kai
    [J]. 2023 11TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, ICBCB, 2023, : 123 - 129
  • [5] Clinically applicable deep learning for diagnosis and referral in retinal disease
    De Fauw, Jeffrey
    Ledsam, Joseph R.
    Romera-Paredes, Bernardino
    Nikolov, Stanislav
    Tomasev, Nenad
    Blackwell, Sam
    Askham, Harry
    Glorot, Xavier
    O'Donoghue, Brendan
    Visentin, Daniel
    van den Driessche, George
    Lakshminarayanan, Balaji
    Meyer, Clemens
    Mackinder, Faith
    Bouton, Simon
    Ayoub, Kareem
    Chopra, Reena
    King, Dominic
    Karthikesalingam, Alan
    Hughes, Cian O.
    Raine, Rosalind
    Hughes, Julian
    Sim, Dawn A.
    Egan, Catherine
    Tufail, Adnan
    Montgomery, Hugh
    Hassabis, Demis
    Rees, Geraint
    Back, Trevor
    Khaw, Peng T.
    Suleyman, Mustafa
    Cornebise, Julien
    Keane, Pearse A.
    Ronneberger, Olaf
    [J]. NATURE MEDICINE, 2018, 24 (09) : 1342 - +
  • [6] Clinically applicable deep learning for diagnosis and referral in retinal disease
    Jeffrey De Fauw
    Joseph R. Ledsam
    Bernardino Romera-Paredes
    Stanislav Nikolov
    Nenad Tomasev
    Sam Blackwell
    Harry Askham
    Xavier Glorot
    Brendan O’Donoghue
    Daniel Visentin
    George van den Driessche
    Balaji Lakshminarayanan
    Clemens Meyer
    Faith Mackinder
    Simon Bouton
    Kareem Ayoub
    Reena Chopra
    Dominic King
    Alan Karthikesalingam
    Cían O. Hughes
    Rosalind Raine
    Julian Hughes
    Dawn A. Sim
    Catherine Egan
    Adnan Tufail
    Hugh Montgomery
    Demis Hassabis
    Geraint Rees
    Trevor Back
    Peng T. Khaw
    Mustafa Suleyman
    Julien Cornebise
    Pearse A. Keane
    Olaf Ronneberger
    [J]. Nature Medicine, 2018, 24 : 1342 - 1350
  • [7] DeepAAA: Clinically Applicable and Generalizable Detection of Abdominal Aortic Aneurysm Using Deep Learning
    Lu, Jen-Tang
    Brooks, Rupert
    Hahn, Stefan
    Chen, Jin
    Buch, Varun
    Kotecha, Gopal
    Andriole, Katherine P.
    Ghoshhajra, Brian
    Pinto, Joel
    Vozila, Paul
    Michalski, Mark
    Tenenholtz, Neil A.
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 723 - 731
  • [8] Clinically applicable Gleason grading (GD) system for prostate cancer based on deep learning
    Niu, Yun
    Liu, Can-Cheng
    Zhang, Bing-Lin
    Song, Zhi-Gang
    Chen, Huang
    Liu, Ping-Ping
    Chen, Jing-Si
    Wang, Shu-Hao
    Shi, Huai-Yin
    Zhong, Ding-Rong
    [J]. CHINESE MEDICAL JOURNAL, 2021, 134 (07) : 859 - 861
  • [9] Clinically applicable Gleason grading (GD) system for prostate cancer based on deep learning
    Niu Yun
    Liu Can-Cheng
    Zhang Bing-Lin
    Song Zhi-Gang
    Chen Huang
    Liu Ping-Ping
    Chen Jing-Si
    Wang Shu-Hao
    Shi Huai-Yin
    Zhong Ding-Rong
    [J]. 中华医学杂志(英文版), 2021, 134 (07) : 859 - 861
  • [10] Detection and Diagnosis of Breast Cancer Using Deep Learning
    Alahe, Mohammad Ashik
    Maniruzzaman, Md
    [J]. 2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,