Infinitely many solutions for a Neumann-type differential inclusion problem involving the p(x)-Laplacian

被引:31
|
作者
Dai, Guowei [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
p(x)-Laplacian; Differential inclusion problem; Variational principle; VARIATIONAL PRINCIPLE; EXISTENCE; SPACES;
D O I
10.1016/j.na.2008.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a differential inclusion problem involving the p(x)-Laplacian of the type {-div(vertical bar del u vertical bar(p(x)-2)del u) + lambda(x)vertical bar u vertical bar(p(x)-2)u is an element of partial derivative F(x,u) + partial derivative G(x,u) in Omega, partial derivative u/partial derivative gamma = 0 on partial derivative Omega. We prove the existence of infinitely many solutions of this problem under suitable hypotheses by applying a non-smooth Ricceritype variational principle and the theory of the variable exponent Sobolev spaces. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2297 / 2305
页数:9
相关论文
共 50 条