A field study was carried out to analyze the short-term impacts of replacing mineral by organic fertilizers on the microbial and biochemical parameters relevant for soil fertility and crop yield. Three types of fertilization regimes were compared: (1) conventional fertilizer regime with inorganic fertilizer, and combined integrated fertilizer regimes in which 25 % of the nutrients were supplied by either (2) rabbit manure or (3) vermicompost. The effects on microbial community structure and function (phospholipid fatty acid [PLFA] profiles, bacterial growth, fungal growth, basal respiration, beta-glucosidase, protease and phosphomonoesterase activities), soil biochemical properties (total C, dissolved organic carbon [DOC], N-NH4 (+), N-NO3 (-), PO4, total K) and crop yield were investigated in the samples collected from the experimental soil at harvest, 3 months after addition of fertilizer. The integrated fertilizer regimes stimulated microbial growth, altered the structure of soil microbial community and increased enzyme activity relative to inorganic fertilization. Bacterial growth was particularly influenced by the type of fertilizer regime supplied, while fungal growth only responded to the amount of fertilizer provided. The use of manure produced a fast increase in the abundance of PLFA biomarkers for Gram-negative bacteria as compared to inorganic fertilizer. Nutrient supply and crop yield with organic fertilizers were maintained at similar levels to those obtained with inorganic fertilizer. The effects of the organic amendments were observed even when they involved a small portion of the total amount of nutrients supplied; thereby confirming that some of the beneficial effects of integrated fertilizer strategies may occur in the short term.