Modification of algebraic multigrid for effective GPGPU-based solution of nonstationary hydrodynamics problems

被引:9
|
作者
Demidov, D. E. [1 ]
Shevchenko, D. V. [2 ]
机构
[1] Russian Acad Sci, Kazan Branch, Joint Supercomp Ctr, Kazan 420008, Russia
[2] Kazan Fed Univ, Inst Math & Mech, Kazan 420008, Russia
关键词
GPGPU; Algebraic multigrid; Nonstationary partial differential equations;
D O I
10.1016/j.jocs.2012.08.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present modification of algebraic multigrid algorithm for effective GPGPU-based solution of nonstationary hydrodynamics problems. The modification is easy to implement and allows us to reduce number of times when the multigrid setup is performed, thus saving up to 50% of computation time with respect to unmodified algorithm. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:460 / 462
页数:3
相关论文
共 35 条
  • [1] Application of a parallel algebraic multigrid method for the solution of elastoplastic shell problems
    Meynen, S
    Boersma, A
    Wriggers, P
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1997, 4 (03) : 223 - 238
  • [2] A Multigrid-Schwarz method for the solution of hydrodynamics and heat transfer problems in unstructured meshes
    Galante, Guilherme
    Rizzi, Rogerio L.
    Diverio, Tiaraju A.
    19TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING, PROCEEDINGS, 2007, : 87 - +
  • [3] Algebraic Multigrid Based on Computational Molecules, 1: Scalar Elliptic Problems
    J. K. Kraus
    J. Schicho
    Computing, 2006, 77 : 57 - 75
  • [4] Algebraic multigrid based on computational molecules, 1: Scalar elliptic problems
    Kraus, J
    Schicho, J
    COMPUTING, 2006, 77 (01) : 57 - 75
  • [5] ALGEBRAIC MULTIGRID BASED ON COMPUTATIONAL MOLECULES, 2: LINEAR ELASTICITY PROBLEMS
    Kraus, J. K.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (01): : 505 - 524
  • [6] Algebraic Multigrid Preconditioning for Finite Element Solution of Inhomogeneous Elastic Inclusion Problems in Articular Cartilage
    Hu, Zhengzheng
    Haider, Mansoor A.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2011, 3 (06) : 729 - 744
  • [7] Solution of nonlinear magnetic field problems by Krylov-subspace methods with η-cycle wavelet-based algebraic multigrid preconditioning
    Pereira, Fabio Henrique
    Rodrigues Filho, Bruno A.
    Silva, Viviane C.
    Nabeta, Silvio I.
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 950 - 953
  • [8] Efficient Solution of 3D Elasticity Problems with Smoothed Aggregation Algebraic Multigrid and Block Arithmetics
    D. E. Demidov
    Lobachevskii Journal of Mathematics, 2022, 43 : 948 - 958
  • [9] A linear solver based on algebraic multigrid and defect correction for the solution of adjoint RANS equations
    Foerster, Malte
    Pal, Anna
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 74 (11) : 846 - 855
  • [10] A QUASI-ALGEBRAIC MULTIGRID APPROACH TO FRACTURE PROBLEMS BASED ON EXTENDED FINITE ELEMENTS
    Hiriyur, B.
    Tuminaro, R. S.
    Waisman, H.
    Boman, E. G.
    Keyes, D. E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A603 - A626