Rain footprints on C-band synthetic aperture radar images of the ocean - Revisited

被引:52
|
作者
Alpers, Werner [1 ]
Zhang, Biao [2 ,3 ]
Mouche, Alexis [4 ]
Zeng, Kan [5 ]
Chan, Pak Wai [6 ]
机构
[1] Univ Hamburg, Inst Oceanog, Bundesstr 53, D-20146 Hamburg, Germany
[2] Nanjing Univ Informat Sci & Technol, Sch Marine Sci, 219 Ningliu Rd, Nanjing 210044, Jiangsu, Peoples R China
[3] Jiangsu Res Ctr Ocean Survey & Technol, Nanjing, Jiangsu, Peoples R China
[4] IFREMER, Lab Oceanog Spatiale, F-29280 Plouzane, France
[5] Ocean Univ China, Ocean Remote Sensing Inst, 5 Yushan Rd, Qingdao 266003, Peoples R China
[6] Hong Kong Observ, 134A Nathan Rd, Tsim Sha Tsui, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Rain over the ocean; Synthetic aperture radar; Sea surface winds; C-band radar backscattering; Ring waves; ROUGH SEA-SURFACE; ARTIFICIAL RAIN; CROSS-SECTION; RING-WAVES; MODEL; WINDS; BACKSCATTER; SCATTERING;
D O I
10.1016/j.rse.2016.10.015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
It is well known that rain leaves footprints on the sea surface that sometimes become visible on synthetic aperture radar (SAR) images. Rain cells can easily be detected on SAR images at all radar frequencies when they are associated with a downdraft pattern. But rain cells are not always associated with downdraft and rain can also occur in other forms, as stratified rain, rain bands, and squall lines. It turns out that radar signatures of rain at C-band are much more complex than at L- or X-band radar and that it is particularly difficult to identify unambiguously rain events on C-band SAR images acquired over the ocean. This is because C-band lies in the transition region where raindrops impinging onto the sea surface can increase (usually) or decrease the backscattered radar power and where volume scattering and attenuation by rain drops in the atmosphere are not always negligible (at very high rain rates). In order to get an insight into the physical mechanisms causing the C-band radar signatures of rain, we first revisit results obtained from historic laboratory and field experiments and multi-frequency/multi-polarization SAR data acquired during the SIR-C/X-SAR spaceshuttle mission in 1994. Then we analyze several C-band SAR images acquired by the European satellites Envisat and Sentinel-1A, and the Canadian satellite Radarsat-2 and compare them, whenever possible, with quasi-coincident and collocated weather radar images. The observational data show that, at low to medium rain rates, the main physical mechanism causing C-band radar signatures of rain is Bragg scattering at ring waves generated by the rain drops impinging onto the sea surface, which increase the radar backscatter. However, areas of increased radar backscatter are often accompanied by adjacent areas of decreased radar backscatter, which is due to attenuation of the Bragg waves by turbulence also generated by the impinging rain drops. Furthermore, we present a full-polarimetric Radarsat-2 SAR image of a rain cell together with a polarimetric decomposition analysis, which shows that the C-band radar signature of a rain cell is caused by surface scattering. The observation show that radar signatures of rain cells often contain segments, where the co-polarized as well the cross-polarized radar backscatter are strongly enhanced, which indicates non-Bragg scattering contributions to the scattering process. Furthermore, the polarimetric decomposition analysis shows that the C-band radar signature of a rain cell is dominated by surface scattering. Possible mechanisms, like scattering at splash products, are discussed. Whether the normalized radar cross section (NRCS) due to rain is increased or decreased depends on rain rate, wind speed, incidence angle, and history of the rain event. At low to moderate wind speeds (<10 ms(-1)) and low to medium high rain rates (<50 mm h(-1)), the NRCS is usually increased by up to 8 dB, and at high wind speeds (>10 m s(-1)) and low to high rain rates (but <50 mm h(-1)), the NRCS is usually decreased by up to 3 dB. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:169 / 185
页数:17
相关论文
共 50 条
  • [1] Rain effects on the hurricane observations over the ocean by C-band Synthetic Aperture Radar
    Zhang, Guosheng
    Li, Xiaofeng
    Perrie, William
    Zhang, Biao
    Wang, Lei
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (01) : 14 - 26
  • [2] C-BAND RADAR SIGNATURES OF RAIN OVER THE OCEAN - REVISITED
    Alpers, Werner
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 5336 - 5339
  • [3] A C-band inverse synthetic aperture radar system
    Lin, PP
    Lu, GC
    Huan, H
    [J]. ICR '96 - 1996 CIE INTERNATIONAL CONFERENCE OF RADAR, PROCEEDINGS, 1996, : 250 - 253
  • [4] A C-Band Fully Polarimetric Automotive Synthetic Aperture Radar
    Merlo, Jason M.
    Nanzer, Jeffrey A.
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (03) : 2587 - 2600
  • [5] Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization
    Horstmann, J
    Koch, W
    Lehner, S
    Tonboe, R
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (05): : 2122 - 2131
  • [6] On C-Band Quad-Polarized Synthetic Aperture Radar Properties of Ocean Surface Currents
    Fan, Shengren
    Kudryavtsev, Vladimir
    Zhang, Biao
    Perrie, William
    Chapron, Bertrand
    Mouche, Alexis
    [J]. REMOTE SENSING, 2019, 11 (19)
  • [7] Potential of EOS-04 C-band Synthetic Aperture Radar in Identifying Oceanic Rain Cells
    Sharma, Neerja
    Shukla, Bipasha Paul
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (05) : 1153 - 1161
  • [8] Influence of mesoscale eddies on wind retrieval from C-band synthetic aperture radar images
    Jiang, Tao
    Hao, Mengyu
    Shao, Weizeng
    Jiang, Xingwei
    Zhao, Xianbin
    [J]. Remote Sensing Letters, 2024, 15 (11) : 1163 - 1174
  • [9] CMODH Validation for C-Band Synthetic Aperture Radar HH Polarization Wind Retrieval Over the Ocean
    Lu, Yiru
    Zhang, Biao
    Perrie, William
    Mouche, Alexis
    Zhang, Guosheng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (01) : 102 - 106
  • [10] OUTDOOR MEASUREMENTS WITH GROUND BASED C-BAND SYNTHETIC APERTURE RADAR
    Moldovan, Adrian-Septimiu
    Toma, Stefan-Adrian
    Poncos, Valentin Ioan
    Teleaga, Delia Cosmina
    Serban, Florin
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3445 - 3447