ON THE GROWTH OF SOLUTIONS OF COMPLEX DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS OF FINITE LOGARITHMIC ORDER

被引:0
|
作者
Cao, Ting-Bin [1 ]
Liu, Kai [1 ]
Wang, Jun [2 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[2] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
来源
MATHEMATICAL REPORTS | 2013年 / 15卷 / 03期
关键词
entire function; differential equation; Nevanlinna theory; finite logarithmic order; MEROMORPHIC SOLUTIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of logarithmic order is used to investigate the growth of solutions of the linear differential equations f((k)) + A(k-1) (z)f((k-1)) + ... + A(1) (z) f' + A(0) (z) f = 0, f((k)) + A(k-1) (z) f((k-1)) + ... + A(1)(z) f' + A(0) (z)(f) = F (z), where A(0) not equal 0, A(1), ... , A(k-1) and F not equal 0 are transcendental entire functions with orders zero.
引用
收藏
页码:249 / 269
页数:21
相关论文
共 50 条