An Adaptive Alignment Algorithm for Quality-controlled Label-free LC-MS

被引:27
|
作者
Sandin, Marianne [1 ]
Ali, Ashfaq [1 ]
Hansson, Karin
Mansson, Olle [3 ]
Andreasson, Erik [2 ]
Resjo, Svante [2 ]
Levander, Fredrik [1 ,3 ]
机构
[1] Lund Univ, Dept Immunotechnol, S-22184 Lund, Sweden
[2] Swedish Agr Univ, Dept Plant Protect Biol, S-23053 Alnarp, Sweden
[3] Lund Univ, Dept Astron & Theoret Phys, S-22362 Lund, Sweden
基金
瑞典研究理事会;
关键词
OPEN-SOURCE SOFTWARE; QUANTITATIVE PROTEOMICS; FRAMEWORK; PLATFORM; TOOL;
D O I
10.1074/mcp.O112.021907
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Label-free quantification using precursor-based intensities is a versatile workflow for large-scale proteomics studies. The method however requires extensive computational analysis and is therefore in need of robust quality control during the data mining stage. We present a new label-free data analysis workflow integrated into a multiuser software platform. A novel adaptive alignment algorithm has been developed to minimize the possible systematic bias introduced into the analysis. Parameters are estimated on the fly from the data at hand, producing a user-friendly analysis suite. Quality metrics are output in every step of the analysis as well as actively incorporated into the parameter estimation. We furthermore show the improvement of this system by comprehensive comparison to classical label-free analysis methodology as well as current state-of-the-art software.
引用
收藏
页码:1407 / 1420
页数:14
相关论文
共 50 条
  • [1] Is label-free LC-MS/MS ready for biomarker discovery?
    Sandin, Marianne
    Chawade, Aakash
    Levander, Fredrik
    PROTEOMICS CLINICAL APPLICATIONS, 2015, 9 (3-4) : 289 - 294
  • [2] Protein Quantification in Label-Free LC-MS Experiments
    Clough, Timothy
    Key, Melissa
    Ott, Ilka
    Ragg, Susanne
    Schadow, Gunther
    Vitek, Olga
    JOURNAL OF PROTEOME RESEARCH, 2009, 8 (11) : 5275 - 5284
  • [3] Generic workflow for quality assessment of quantitative label-free LC-MS analysis
    Sandin, Marianne
    Krogh, Morten
    Hansson, Karin
    Levander, Fredrik
    PROTEOMICS, 2011, 11 (06) : 1114 - 1124
  • [4] Dataset of mouse hippocampus profiled by LC-MS/MS for label-free quantitation
    English, Jane A.
    Scaife, Caitriona
    Harauma, Akiko
    Focking, Melanie
    Wynne, Kieran
    Cagney, Gerard
    Moriguchi, Toru
    Cotter, David R.
    DATA IN BRIEF, 2016, 7 : 341 - 343
  • [5] Optimization of label-free nano LC-MS/MS analysis of the placental proteome
    Luyten, Leen J.
    Dieu, Marc
    Demazy, Catherine
    Fransolet, Maude
    Nawrot, Tim S.
    Renard, Patricia
    Debacq-Chainiaux, Florence
    PLACENTA, 2020, 101 : 159 - 162
  • [6] Proteome dataset of Hemileia vastatrix by LC-MS/MS label-free identification
    Cury, Natalia Faustino
    Ribeiro, Daiane Gonzaga
    de Lima, Jonathan Dias
    Mendes, Pollyana da Nobrega
    Fernandez, Diana
    Fontes, Wagner
    Castro, Mariana S.
    Sousa, Marcelo V.
    Martins, Natalia F.
    Mehta, Angela
    DATA IN BRIEF, 2022, 43
  • [7] Profiling of 54 plasma glycoproteins by label-free targeted LC-MS/MS
    Dahabiyeh, Lina A.
    Tooth, David
    Barrett, David A.
    ANALYTICAL BIOCHEMISTRY, 2019, 567 : 72 - 81
  • [8] Normalization and missing value imputation for label-free LC-MS analysis
    Karpievitch, Yuliya V.
    Dabney, Alan R.
    Smith, Richard D.
    BMC BIOINFORMATICS, 2012, 13
  • [9] Normalization and missing value imputation for label-free LC-MS analysis
    Yuliya V Karpievitch
    Alan R Dabney
    Richard D Smith
    BMC Bioinformatics, 13
  • [10] Data processing methods and quality control strategies for label-free LC-MS protein quantification
    Sandin, Marianne
    Teleman, Johan
    Malmstrom, Johan
    Levander, Fredrik
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2014, 1844 (01): : 29 - 41