Symbolic algorithm for factorization of the evolution operator of the time-dependent Schrodinger equation

被引:1
|
作者
Vinitsky, SI [1 ]
Gerdt, VP
Gusev, AA
Kaschiev, MS
Rostovtsev, VA
Samoylov, VN
Tupikova, TV
Uwano, Y
机构
[1] Joint Inst Nucl Res, Dubna 141980, Moscow, Russia
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
[3] Future Univ, Hakodate, Hokkaido 0418655, Japan
基金
俄罗斯基础研究基金会; 日本学术振兴会;
关键词
Operating System; Artificial Intelligence; Evolutionary Scheme; Gauge Transformation; Software Engineer;
D O I
10.1134/S0361768806020083
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A symbolic algorithm for the decomposition of the unitary evolution operator is developed. This algorithm allows one to generate multilayer implicit schemes for solution of the time-dependent Schrodinger equation. Some additional gauge transformations are also implemented in the algorithm. This allows one to distinguish symmetric operators, which are required for constructing efficient evolutionary schemes. The efficiency of the generated schemes is demonstrated by integrable models.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 50 条
  • [1] Symbolic algorithm for factorization of the evolution operator of the time-dependent Schrödinger equation
    S. I. Vinitsky
    V. P. Gerdt
    A. A. Gusev
    M. S. Kaschiev
    V. A. Rostovtsev
    V. N. Samoylov
    T. V. Tupikova
    Y. Uwano
    Programming and Computer Software, 2006, 32 : 103 - 113
  • [2] Symbolic-numerical algorithm for solving the time-dependent Schrodinger equation by split-operator method
    Gusev, A
    Gerdt, V
    Kaschiev, M
    Rostovtsev, V
    Samoylov, V
    Tupikova, T
    Uwano, Y
    Vinitsky, S
    COMPUTER ALGEBRA IN SCIENFIFIC COMPUTING, PROCEEDINGS, 2005, 3718 : 244 - 258
  • [3] An implicit split-operator algorithm for the nonlinear time-dependent Schrodinger equation
    Roulet, Julien
    Vanicek, Jiri
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (20):
  • [4] On the scattering operator for the Schrodinger equation with a time-dependent potential
    Jensen, A
    MATHEMATICAL RESULTS IN QUANTUM MECHANICS, 1999, 108 : 91 - 97
  • [5] Symplectic splitting operator methods for the time-dependent Schrodinger equation
    Blanes, Sergio
    Casas, Fernando
    Murua, Ander
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (23):
  • [6] A time- and spaceadaptive algorithm for the linear time-dependent Schrodinger equation
    Dorfler, W
    NUMERISCHE MATHEMATIK, 1996, 73 (04) : 419 - 448
  • [7] Fourth-order factorization of the evolution operator for time-dependent potentials
    Baye, D
    Goldstein, G
    Capel, P
    PHYSICS LETTERS A, 2003, 317 (5-6) : 337 - 342
  • [8] Sixth-order factorization of the evolution operator for time-dependent potentials
    Goldstein, G
    Baye, D
    PHYSICAL REVIEW E, 2004, 70 (05):
  • [9] A TIME-DEPENDENT SCHRODINGER-EQUATION
    KRANOLD, HU
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (09) : 2345 - 2347
  • [10] On the derivation of the time-dependent equation of Schrodinger
    Briggs, JS
    Rost, JM
    FOUNDATIONS OF PHYSICS, 2001, 31 (04) : 693 - 712