Magnetic field-controlled microfluidic transport

被引:73
|
作者
Grant, KM [1 ]
Hemmert, JW [1 ]
White, HS [1 ]
机构
[1] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
关键词
D O I
10.1021/ja016544y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Several new forms of magnetohydrodynamic (MHD) flow occurring in the solution gap between two 250-mum-diameter Pt microdisk electrodes, oriented in a face-to-face geometry and immersed in a uniform magnetic field (1 T), are described. The MHD flow results from the Lorentz force generated by diffusion of electrochemically generated molecular ions through the magnetic field. Individual microscopic flow tubes (similar to50-mum radius) spanning the gap between the face-to-face electrodes are observed during the 1-e(-) reduction of nitrobenzene in acetonitrile solutions. The flow tubes extend up to similar to2 cm in length and are stable for indefinite periods. Directional transport of the electrogenerated nitrobenzene radical anion over macroscopic distances within the flow tubes, with minimal diffusional broadening, is demonstrated using an ultramicroelectrode probe to map the convective flux of redox species, Pulsed MHD transport of small packets of molecules and the formation of large area (similar to3 cm(2)), microscopically thin (25 mum) rotating sheets of solution are also demonstrated. The results suggest that electrochemical methods, in combination with magnetohydrodynamic principles, may be useful for external field-controlled microfluidic systems.
引用
收藏
页码:462 / 467
页数:6
相关论文
共 50 条
  • [1] External Field-Controlled Ablation: Magnetic Field
    Maksimovic, Jovan
    Ng, Soon Hock
    Katkus, Tomas
    Cowie, Bruce C. C.
    Juodkazis, Saulius
    NANOMATERIALS, 2019, 9 (12)
  • [2] Progress on High Magnetic Field-Controlled Transport Phenomena and Their Effects on Solidification Microstructure
    Wang, Qiang
    Liu, Tie
    Wang, Kai
    Gao, Pengfei
    Liu, Yin
    He, Jicheng
    ISIJ INTERNATIONAL, 2014, 54 (03) : 516 - 525
  • [3] Light- and magnetic field-controlled optocouplers
    Vikulina, LF
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1999, 42 (06) : 823 - 826
  • [4] Magnetic Field-Controlled Phase Transitions in Antiferromagnetic Structures
    Egorov, V. I.
    Kryzhanovsky, B. V.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2024, 33 (04) : 401 - 410
  • [5] Magnetic field-controlled gene expression in encapsulated cells
    Ortner, Viktoria
    Kaspar, Cornelius
    Halter, Christian
    Toellner, Lars
    Mykhaylyk, Olga
    Walzer, Johann
    Guenzburg, Walter H.
    Dangerfield, John A.
    Hohenadl, Christine
    Czerny, Thomas
    JOURNAL OF CONTROLLED RELEASE, 2012, 158 (03) : 424 - 432
  • [6] CURRENT AND MAGNETIC FIELD-CONTROLLED SUPERCONDUCTING MULTITERMINAL MICROSTRUCTURES
    VOL, ED
    OMELYANCHOUK, AN
    FIZIKA NIZKIKH TEMPERATUR, 1994, 20 (02): : 107 - 114
  • [7] Magnetic field-controlled femtosecond pulse shaping by magnetoplasmonic crystals
    Vabishchevich, P. P.
    Frolov, A. Yu
    Shcherbakov, M. R.
    Grunin, A. A.
    Dolgova, T. V.
    Fedyanin, A. A.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (17)
  • [8] Field-controlled randomness of colloidal paths on a magnetic bubble lattice
    Jungnickel, C.
    Khattari, Z.
    Johansen, T. H.
    Fischer, Th M.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [9] Magnetic Field-Controlled Electrical Conductivity in AA Bilayer Graphene
    Apinyan, Vardan
    Kopec, Tadeusz
    C-JOURNAL OF CARBON RESEARCH, 2023, 9 (02):
  • [10] A Magnetic Field-Controlled Elastomer Composite Based on Porous Polydimethylsiloxane
    Amirov A.A.
    Kaminskiy A.S.
    Arkhipova E.A.
    Cherkasova N.A.
    Tovpinets A.O.
    Leucine V.N.
    Pyatakov A.P.
    Zhivulin V.E.
    Rodionova V.V.
    Bulletin of the Russian Academy of Sciences: Physics, 2023, 87 (06) : 715 - 719