Fabrication of 9.6 V High-performance Asymmetric Supercapacitors Stack Based on Nickel Hexacyanoferrate-derived Ni(OH)2 Nanosheets and Bio-derived Activated Carbon

被引:103
|
作者
Kaipannan, Subramani [1 ,2 ]
Marappan, Sathish [1 ,2 ]
机构
[1] CSIR Cent Electrochem Res Inst, Funct Mat Div, Karaikkudi 630003, Tamil Nadu, India
[2] CSIR Cent Electrochem Res Inst, Acad Sci & Innovat Res AcSIR, Karaikkudi 630003, Tamil Nadu, India
关键词
GRAPHENE OXIDE NANOCOMPOSITES; HIGH-ENERGY-DENSITY; ELECTROCHEMICAL PERFORMANCE; AQUEOUS SUPERCAPACITORS; DOPED GRAPHENE; POROUS CARBON; ELECTRODES; FACILE; ALPHA-NI(OH)(2); BETA-NI(OH)(2);
D O I
10.1038/s41598-018-37566-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hydrated Ni(OH)(2) and activated carbon based electrodes are widely used in electrochemical applications. Here we report the fabrication of symmetric supercapacitors using Ni(OH)(2) nanosheets and activated carbon as positive and negative electrodes in aqueous electrolyte, respectively. The asymmetric supercapacitors stack connected in series exhibited a stable device voltage of 9.6 V and delivered a stored high energy and power of 30 mWh and 1632 mW, respectively. The fabricated device shows an excellent electrochemical stability and high retention of 81% initial capacitance after 100,000 charge-discharges cycling at high charging current of 500 mA. The positive electrode material Ni(OH)(2) nanosheets was prepared through chemical decomposition of nickel hexacyanoferrate complex. The XRD pattern revealed the high crystalline nature of Ni(OH)(2) with an average crystallite size of similar to 10 nm. The nitrogen adsorption-desorption isotherms of Ni(OH)(2) nanosheets indicate the formation of mesoporous Ni(OH)(2) nanosheets. The chemical synthesis of Ni(OH)(2) results the formation of hierarchical nanosheets that are randomly oriented which was confirmed by FE-SEM and HR-TEM analysis. The negative electrode, activated porous carbon (OPAA-700) was obtained from orange peel waste. The electrochemical properties of Ni(OH)(2) nanosheets and OPAA-700 were studied and exhibit a high specific capacity of 1126 C/g and high specific capacitance of 311 F/g at current density of 2 A/g, respectively. Ni(OH)(2) nanosheets delivered a good rate performance and remarkable capacitance retention of 96% at high current density of 32 A/g.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Fabrication of 9.6 V High-performance Asymmetric Supercapacitors Stack Based on Nickel Hexacyanoferrate-derived Ni(OH)2 Nanosheets and Bio-derived Activated Carbon
    Subramani Kaipannan
    Sathish Marappan
    Scientific Reports, 9
  • [2] MnOx nanosheets anchored on a bio-derived porous carbon framework for high-performance asymmetric supercapacitors
    Li, Chengjie
    Dong, Xiqing
    Zhang, Yingchao
    Hu, Jing
    Liu, Weiwei
    Cui, Xin
    Hao, Aiyou
    APPLIED SURFACE SCIENCE, 2020, 527
  • [3] Titania supported bio-derived activated carbon as an electrode material for high-performance supercapacitors
    Bortamuly, Rajashree
    Naresh, Vangapally
    Das, Manash R.
    Kumar, V. Kiran
    Muduli, Sadananda
    Martha, Surendra K.
    Saikia, Pranjal
    JOURNAL OF ENERGY STORAGE, 2021, 42
  • [4] All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon
    Subramani, K.
    Sudhan, N.
    Divya, R.
    Sathish, M.
    RSC ADVANCES, 2017, 7 (11): : 6648 - 6659
  • [5] Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density
    Huang, Jichun
    Xu, Panpan
    Cao, Dianxue
    Zhou, Xiaobin
    Yang, Sainan
    Li, Yiju
    Wang, Guiling
    JOURNAL OF POWER SOURCES, 2014, 246 : 371 - 376
  • [6] β-Ni(OH)2 Nanosheet Arrays Grown on Biomass-Derived Hollow Carbon Microtubes for High-Performance Asymmetric Supercapacitors
    Li, Qian
    Lu, Chunxiang
    Xiao, Dengji
    Zhang, Huifang
    Chen, Chengmeng
    Xie, Lijing
    Liu, Yaodong
    Yuan, Shuxia
    Kong, Qingqiang
    Zheng, Ke
    Yin, Junqing
    CHEMELECTROCHEM, 2018, 5 (09): : 1279 - 1287
  • [7] Fabrication of activated carbon electrodes derived from peanut shell for high-performance supercapacitors
    Lokesh Pandey
    Subhajit Sarkar
    Anil Arya
    A. L. Sharma
    Amrish Panwar
    R. K. Kotnala
    Anurag Gaur
    Biomass Conversion and Biorefinery, 2023, 13 : 6737 - 6746
  • [8] Fabrication of activated carbon electrodes derived from peanut shell for high-performance supercapacitors
    Pandey, Lokesh
    Sarkar, Subhajit
    Arya, Anil
    Sharma, A. L.
    Panwar, Amrish
    Kotnala, R. K.
    Gaur, Anurag
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (08) : 6737 - 6746
  • [9] Combination of redox-active natural indigo dye and bio-derived carbon from ridge gourd fruit for high-performance asymmetric supercapacitors
    Brahma, Sumana
    Ramanujam, Kothandaraman
    IONICS, 2022, 28 (03) : 1427 - 1440
  • [10] Combination of redox-active natural indigo dye and bio-derived carbon from ridge gourd fruit for high-performance asymmetric supercapacitors
    Sumana Brahma
    Kothandaraman Ramanujam
    Ionics, 2022, 28 : 1427 - 1440