ON THE KURATOWSKI MEASURE OF NONCOMPACTNESS FOR DUALITY MAPPINGS

被引:0
|
作者
Dinca, George [1 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
关键词
Kuratowski measure of noncompactness; smooth Banach spaces; duality mappings; p-Laplacian;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, parallel to.parallel to) be an infinite dimensional real Banach space having a Frechet differentiable norm and phi: R+ -> R+ be a gauge function. Denote by J(phi): X -> X* the duality mapping on X corresponding to phi. Then, for the Kuratowski measure of noncompactness of J(phi), the following estimate holds: alpha(J(phi)) >= sup {phi(r)/r vertical bar r > 0}. In particular, for -Delta(p): W-0(1,P)(Omega) -> W--1,W-P'(Omega), 1 < p < infinity, 1/p +1/p' = 1, viewed as duality mapping on W-0(1,p)(Omega), corresponding to the gauge function phi(t) = t(p-1), one has alpha(-Delta(p)) ={1 for p = 2, infinity for p is an element of (1,2) boolean OR (2, infinity).
引用
收藏
页码:181 / 187
页数:7
相关论文
共 50 条
  • [1] On countable determination of the Kuratowski measure of noncompactness
    Chen, Xiaoling
    Cheng, Lixin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (01)
  • [2] Kuratowski's Measure of Noncompactness with Respect to Thompson's Metric
    Herzog, Gerd
    Kunstmann, Peer Chr
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (03): : 335 - 346
  • [3] On the noncompactness of classes of mappings with restrictions on dilation in measure
    V. L. Potemkin
    V. I. Ryazanov
    [J]. Ukrainian Mathematical Journal, 1998, 50 (11) : 1738 - 1749
  • [4] Interpolation estimates of the measure of noncompactness for multilinear mappings
    Mastylo, Mieczyslaw
    Silva, Eduardo B.
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (02) : 793 - 819
  • [5] Existence results for semilinear fractional differential equations via Kuratowski measure of noncompactness
    Li Kexue
    Peng Jigen
    Gao Jinghuai
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 591 - 610
  • [6] Existence results for semilinear fractional differential equations via Kuratowski measure of noncompactness
    Kexue Li
    Jigen Peng
    Jinghuai Gao
    [J]. Fractional Calculus and Applied Analysis, 2012, 15 : 591 - 610
  • [7] Hausdorff Measure of Noncompactness of Matrix Mappings on Cesaro Spaces
    Gulec, G. Canan Hazar
    Sarigol, M. Ali
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (01): : 157 - 167
  • [8] Some Notes on Matrix Mappings and their Hausdorff Measure of Noncompactness
    Malkowsky, E.
    Ozger, F.
    Alotaibi, A.
    [J]. FILOMAT, 2014, 28 (05) : 1059 - 1072
  • [9] On Fractional Differential Equations with State-Dependent Delay via Kuratowski Measure of Noncompactness
    Belmekki, Mohammed
    Mekhalfi, Kheira
    [J]. FILOMAT, 2017, 31 (02) : 451 - 460
  • [10] Semilinear Mixed Type Integro-Differential Evolution Equations via Kuratowski Measure of Noncompactness
    Benchohra, Mouffak
    Rezoug, Noreddine
    Zhou, Yong
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (02): : 143 - 156