Identities and relations involving the modified degenerate hermite-based Apostol-Bernoulli and Apostol-Euler polynomials

被引:10
|
作者
Srivastava, H. M. [1 ,2 ]
Kurt, Burak [3 ]
Kurt, Veli [3 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Univ Akdeniz, Fac Educ, Dept Math, TR-07058 Antalya, Turkey
关键词
Bernoulli polynomials and numbers; Euler polynomials and numbers; Apostol-Bernoulli polynomials and numbers; Apostol-Euler polynomials and numbers; Apostol-Genocchi polynomials and numbers; Hermite polynomials; Degenerate Bernoulli polynomials and numbers; Degenerate Euler polynomials and numbers; Hermite-based Unified Apostol type polynomials;
D O I
10.1007/s13398-018-0549-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent years, many researchers (see, for example, Araci et al. in Springer Plus5(1), Article ID 860. 10.1186/s40064-016-2357-4, 2016 to Zhang and Yang in Comput Math Appl 56:2993-2999, 2008) worked on the Apostol-Bernoulli type polynomials and numbers. They introduced and investigated some properties of these types of polynomials and numbers including several identities and symmetric relations for them. Carlitz (Script Math 25:323-330, 1961, Utilitas Math 15:51-88, 1979) introduced the degenerate Bernoulli numbers. Dolgy et al. (Adv Stud Contemp Math 26:203-209, 2016) and Kwon et al. (Filomat 26:1-9, 2016) introduced and investigated the modified degenerate Bernoulli polynomials and the modified degenerate Euler polynomials, respectively. They gave some relations for these polynomials. ozarslan (Comput Math Appl 62:2452-2462, 2011) and Khan et al. (J Math Anal Appl 351:756-764, 2009) considered the Hermite-based unified Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Khan et al. (J Nonlinear Sci Appl 10:5072-5081, 2017) introduced the partially degenerate Hermite-Genocchi polynomials. In this article, we define the modified degenerate Hermite-based Apostol-Bernoulli, the modified degenerate Hermite-based Apostol-Euler and the modified Hermite-based Apostol-Genocchi polynomials. We prove two theorems and several symmetry relations for each of these families of polynomials. We also derive finite summation formulas for the modified degenerate unified Hermite-based Apostol type polynomials.
引用
收藏
页码:1299 / 1313
页数:15
相关论文
共 50 条
  • [1] Identities and relations involving the modified degenerate hermite-based Apostol–Bernoulli and Apostol–Euler polynomials
    H. M. Srivastava
    Burak Kurt
    Veli Kurt
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1299 - 1313
  • [2] Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials
    Ozarslan, Mehmet Ali
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [3] A note on the Apostol-Bernoulli and Apostol-Euler polynomials
    Kim, Min-Soo
    Hu, Su
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (03): : 449 - 464
  • [4] ASYMPTOTIC ESTIMATES FOR APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS
    Navas, Luis M.
    Ruiz, Francisco J.
    Varona, Juan L.
    MATHEMATICS OF COMPUTATION, 2012, 81 (279) : 1707 - 1722
  • [5] Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials
    Yuan He
    Serkan Araci
    Advances in Difference Equations, 2014
  • [6] Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials
    Mehmet Ali Özarslan
    Advances in Difference Equations, 2013
  • [7] Some results on the Apostol-Bernoulli and Apostol-Euler polynomials
    Wang, Weiping
    Jia, Cangzhi
    Wang, Tianming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (06) : 1322 - 1332
  • [8] Elliptic extensions of the Apostol-Bernoulli and Apostol-Euler polynomials
    Luo, Qiu-Ming
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 261 : 156 - 166
  • [9] Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials
    Luo, QM
    Srivastava, HM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (01) : 290 - 302
  • [10] Recurrence formulae for Apostol-Bernoulli and Apostol-Euler polynomials
    Yuan He
    Chunping Wang
    Advances in Difference Equations, 2012