A characterization of Banach function spaces associated with martingales

被引:0
|
作者
Kikuchi, M [1 ]
机构
[1] Toyama Univ, Dept Math, Toyama 9308555, Japan
关键词
D O I
10.1017/S0017089503001617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (Omega, Sigma, P) be a nonatomic probability space and let F= (F-n)(nis an element ofZ+) be a filtration. If f = (f(n))(nis an element ofZ+) is a uniformly integrable F-martingale, let A(F)f = denote the martingale defined byA(F)f(n) = E[\finfinity\] (nis an element ofZ(+)), where finfinity = lim(n)f(n) a.s. Let X be a Banach function space over Omega. We give a necessary and sufficient condition for X to have the property that S(f) is an element of X if and only if S(A(F)f) is an element of X, where S(f) stands for the square function of f = (f(n)). 2000 Mathematical Subject Classification.
引用
收藏
页码:143 / 153
页数:11
相关论文
共 50 条