Diffusion-weighted MRI in neurodegenerative and psychiatric animal models: Experimental strategies and main outcomes

被引:3
|
作者
Eed, Amr [1 ]
Cerdan Cerda, Antonio [1 ]
Lerma, Juan [1 ]
De Santis, Silvia [1 ,2 ]
机构
[1] UMH, Inst Neurociencias, CSIC, Alicante, Spain
[2] Cardiff Univ, Sch Psychol, CUBRIC, Cardiff, Wales
基金
欧洲研究理事会;
关键词
Small animals; Dw-MRI; MILD COGNITIVE IMPAIRMENT; NEURITE ORIENTATION DISPERSION; WHITE-MATTER DEGENERATION; GAUSSIAN WATER DIFFUSION; APP/PS1 MOUSE MODEL; PARKINSONS-DISEASE; ALZHEIMERS-DISEASE; RAT MODEL; MURINE MODEL; BRAIN;
D O I
10.1016/j.jneumeth.2020.108814
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Preclinical MRI approaches constitute a key tool to study a wide variety of neurological and psychiatric illnesses, allowing a more direct investigation of the disorder substrate and, at the same time, the possibility of back-translating such findings to human subjects. However, the lack of consensus on the optimal experimental scheme used to acquire the data has led to relatively high heterogeneity in the choice of protocols, which can potentially impact the comparison between results obtained by different groups, even using the same animal model. This is especially true for diffusion-weighted MRI data, where certain experimental choices can impact not only on the accuracy and precision of the extracted biomarkers, but also on their biological meaning. With this in mind, we extensively examined preclinical imaging studies that used diffusion-weighted MRI to investigate neurodegenerative, neurodevelopmental and psychiatric disorders in rodent models. In this review, we discuss the main findings for each preclinical model, with a special focus on the analysis and comparison of the different acquisition strategies used across studies and their impact on the heterogeneity of the findings.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Outliers in diffusion-weighted MRI: Exploring detection models and mitigation strategies
    Sairanen, Viljami
    Andersson, Jesper
    NEUROIMAGE, 2023, 283
  • [2] Diffusion-weighted MRI
    Filippi, M
    Rocca, MA
    NEW FRONTIERS OF MR-BASED TECHNIQUES IN MULTIPLE SCLEROSIS, 2003, : 33 - 45
  • [3] The Mystery of Diffusion-Weighted MRI
    Sheerani, Mughis
    SOUTHERN MEDICAL JOURNAL, 2009, 102 (09) : 880 - 880
  • [4] Diffusion-weighted MRI in thymomas
    Carbonetti, Francesco
    Di Girolamo, Marco
    TUMORI JOURNAL, 2016, 102 (01): : E4 - E4
  • [5] DPD of diffusion-weighted MRI
    Azhar, M.
    Shakil, S.
    Greiner, A.
    Kauzlaric, D.
    Korvink, J. G.
    COMPUTERS & FLUIDS, 2018, 172 : 467 - 473
  • [6] ANISOTROPY IN DIFFUSION-WEIGHTED MRI
    MOSELEY, ME
    KUCHARCZYK, J
    ASGARI, HS
    NORMAN, D
    MAGNETIC RESONANCE IN MEDICINE, 1991, 19 (02) : 321 - 326
  • [7] Diffusion-weighted MRI of the prostate
    Mueller-Lisse, U. G.
    Mueller-Lisse, U. L.
    Zamecnik, P.
    Schlemmer, H. -P. W.
    Scherr, M. K.
    RADIOLOGE, 2011, 51 (03): : 205 - 214
  • [8] Diffusion-weighted MRI of denervated muscle: a clinical and experimental study
    Nathalie Holl
    Andoni Echaniz-Laguna
    Guillaume Bierry
    Michel Mohr
    Jean-Philippe Loeffler
    Thomas Moser
    Jean-Louis Dietemann
    Stéphane Kremer
    Skeletal Radiology, 2008, 37 : 1111 - 1117
  • [9] Diffusion-weighted MRI of denervated muscle: a clinical and experimental study
    Holl, Nathalie
    Echaniz-Laguna, Andoni
    Bierry, Guillaume
    Mohr, Michel
    Loeffler, Jean-Philippe
    Moser, Thomas
    Dietemann, Jean-Louis
    Kremer, Stephane
    SKELETAL RADIOLOGY, 2008, 37 (12) : 1111 - 1117
  • [10] Registration Strategies for Whole-Body Diffusion-Weighted MRI Stitching
    Ceranka, Jakub
    Polfliet, Mathias
    Lecouvet, Frederic
    Michoux, Nicolas
    de Mey, Johan
    Vandemeulebroucke, Jef
    COMPUTATIONAL DIFFUSION MRI, 2016, : 195 - 206