Adaptive Multiple Importance Sampling

被引:142
|
作者
Cornuet, Jean-Marie [2 ]
Marin, Jean-Michel [1 ]
Mira, Antonietta [3 ]
Robert, Christian P. [4 ,5 ]
机构
[1] Univ Montpellier 2, Inst Math & Modelisat Montpellier, CNRS, UMR 5149, Montpellier, France
[2] INRA, Ctr Biol & Gest Populat, Paris, France
[3] Univ Lugano, Dept Econ, Lugano, Switzerland
[4] Univ Paris 09, CEREMADE, IUF, F-75775 Paris 16, France
[5] CREST, Tokyo, Japan
关键词
adaptive importance sampling; banana shape target; deterministic mixture weights; particle filters; population genetics; population Monte Carlo; sequential Monte Carlo; POPULATION; INFERENCE; MODEL;
D O I
10.1111/j.1467-9469.2011.00756.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
. The Adaptive Multiple Importance Sampling algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling (IS) scheme. The difference with earlier adaptive IS implementations like Population Monte Carlo is that the importance weights of all simulated values, past as well as present, are recomputed at each iteration, following the technique of the deterministic multiple mixture estimator of Owen & Zhou (J. Amer. Statist. Assoc., 95, 2000, 135). Although the convergence properties of the algorithm cannot be investigated, we demonstrate through a challenging banana shape target distribution and a population genetics example that the improvement brought by this technique is substantial.
引用
收藏
页码:798 / 812
页数:15
相关论文
共 50 条
  • [1] Efficient Adaptive Multiple Importance Sampling
    El-Laham, Yousef
    Martino, Luca
    Elvira, Victor
    Bugallo, Monica F.
    [J]. 2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [2] Representativity for Robust and Adaptive Multiple Importance Sampling
    Pajot, Anthony
    Barthe, Loic
    Paulin, Mathias
    Poulin, Pierre
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (08) : 1108 - 1121
  • [3] Adaptive multiple importance sampling for general functions
    Mateu Sbert
    Vlastimil Havran
    [J]. The Visual Computer, 2017, 33 : 845 - 855
  • [4] Adaptive multiple importance sampling for Gaussian processes
    Xiong, Xiaoyu
    Smidl, Vaclav
    Filippone, Maurizio
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (08) : 1644 - 1665
  • [5] Adaptive multiple importance sampling for general functions
    Sbert, Mateu
    Havran, Vlastimil
    [J]. VISUAL COMPUTER, 2017, 33 (6-8): : 845 - 855
  • [6] MCMC-Driven Adaptive Multiple Importance Sampling
    Martino, Luca
    Elvira, Victor
    Luengo, David
    Corander, Jukka
    [J]. INTERDISCIPLINARY BAYESIAN STATISTICS, EBEB 2014, 2015, 118 : 97 - 109
  • [7] ADAPTIVE IMPORTANCE SAMPLING
    STADLER, JS
    ROY, S
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1993, 11 (03) : 309 - 316
  • [8] Adaptive BRDF-Oriented Multiple Importance Sampling of Many Lights
    Liu, Yifan
    Xu, Kun
    Yan, Ling-Qi
    [J]. COMPUTER GRAPHICS FORUM, 2019, 38 (04) : 123 - 133
  • [9] UNIFORM CONVERGENCE OF SAMPLE AVERAGE APPROXIMATION WITH ADAPTIVE MULTIPLE IMPORTANCE SAMPLING
    Ben Feng, M.
    Maggiar, Alvaro
    Staum, Jeremy
    Wachter, Andreas
    [J]. 2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 1646 - 1657
  • [10] Adaptive mixture importance sampling
    Raghavan, N
    Cox, DD
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1998, 60 (03) : 237 - 259