Ship Collision Avoidance and Anti Grounding Using Parallelized Cost Evaluation in Probabilistic Scenario-Based Model Predictive Control

被引:0
|
作者
Tengesdal, Trym [1 ,2 ]
Johansen, Tor Arne [1 ,2 ]
Grande, Tom Daniel [3 ]
Blindheim, Simon [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Engn Cybernet, N-7034 Trondheim, Norway
[2] Norwegian Univ Sci & Technol NTNU, Ctr Autonomous Marine Operat & Syst AMOS, N-7034 Trondheim, Norway
[3] Norwegian Tax Adm, Dept IT Anal & Control, N-0663 Oslo, Norway
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Heuristic algorithms; Trajectory; Prediction algorithms; Planning; Vehicle dynamics; Marine vehicles; Dynamics; Collision avoidance; Maritime vehicles; Autonomous systems; Maritime collision avoidance; parallel processing; CUDA; autonomous ships; model predictive control; STRATEGIES; SIMULATION; TRACKING;
D O I
10.1109/ACCESS.2022.3215654
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The ability to effectively process large amounts of information in reasonable time will be important for robust deliberative collision avoidance (COLAV) planning algorithms. Failure to do so can lead to collision, and can be compared to lack of proper supervision from officers on watch (OOW). The main contribution in this article is a parallelized implementation of the Probabilistic Scenario-Based Model Predictive Control (PSB-MPC) on a Graphical Processing Unit (GPU) platform which incorporates both dynamic obstacle avoidance and anti-grounding. Simulation results demonstrate that the COLAV planner can produce collision-free trajectories with respect to grounding hazards and nearby vessels at relatively low computational cost, and which also comply to the COLREGS when deemed possible. Corresponding run-time results show that the algorithm utilizing parallel processing performs better than the alternative for increasing numbers of own-ship control behaviours, nearby static and dynamic obstacles, and dynamic obstacle prediction scenarios considered.
引用
收藏
页码:111650 / 111664
页数:15
相关论文
共 50 条
  • [1] Ship Collision Avoidance and Anti Grounding Using Parallelized Cost Evaluation in Probabilistic Scenario-Based Model Predictive Control
    Norwegian University of Science and Technology , Department of Engineering Cybernetics, Trondheim
    7034, Norway
    不详
    7034, Norway
    不详
    0663, Norway
    [J]. IEEE Access, (111650-111664):
  • [2] Ship Collision Avoidance Using Scenario-Based Model Predictive Control
    Johansen, Tor A.
    Cristofaro, Andrea
    Perez, Tristan
    [J]. IFAC PAPERSONLINE, 2016, 49 (23): : 14 - 21
  • [3] Scenario-Based Model Predictive Control with Several Steps for COLREGS Compliant Ship Collision Avoidance
    Hagen, I. B.
    Kufoalor, D. K. M.
    Johansen, T. A.
    Brekke, E. F.
    [J]. IFAC PAPERSONLINE, 2022, 55 (31): : 307 - 312
  • [4] Collaborative Collision Avoidance for Autonomous Ships Using Informed Scenario-Based Model Predictive Control
    Akdag, Melih
    Fossen, Thor I.
    Johansen, Tor A.
    [J]. IFAC PAPERSONLINE, 2022, 55 (31): : 249 - 256
  • [5] Scenario-based Testing of a Ship Collision Avoidance System
    Porres, Ivan
    Azimi, Sepinoud
    Lilius, Johan
    [J]. 2020 46TH EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS (SEAA 2020), 2020, : 545 - 552
  • [6] Conditional scenario-based model predictive control
    Gonzalez, Edwin
    Sanchis, Javier
    Salcedo, Jose Vicente
    Martinez, Miguel Andres
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (10): : 6880 - 6905
  • [7] Scenario-Based Probabilistic Reachable Sets for Recursively Feasible Stochastic Model Predictive Control
    Hewing, Lukas
    Zeilinger, Melanie N.
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (02): : 450 - 455
  • [8] Scenario-based model predictive control with probabilistic human predictions for human-robot coexistence
    Oleinikov, Artemiy
    Soltan, Sergey
    Balgabekova, Zarema
    Bemporad, Alberto
    Rubagotti, Matteo
    [J]. CONTROL ENGINEERING PRACTICE, 2024, 142
  • [9] A Distributed Algorithm for Scenario-based Model Predictive Control using Primal Decomposition
    Krishnamoorthy, Dinesh
    Foss, Bjarne
    Skogestad, Sigurd
    [J]. IFAC PAPERSONLINE, 2018, 51 (18): : 351 - 356
  • [10] Scenario-based model predictive control of water reservoir systems
    Cestari, Raffaele G.
    Castelletti, Andrea
    Formentin, Simone
    [J]. IFAC PAPERSONLINE, 2023, 56 (03): : 313 - 318