Basecalling using hidden Markov models

被引:12
|
作者
Boufounos, P
El-Difrawy, S
Ehrlich, D
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] Whitehead Inst Biomed Res, Cambridge Ctr 9, Cambridge, MA 02142 USA
关键词
hidden Markov models; basecalling; DNA sequencing; PHRED;
D O I
10.1016/j.jfranklin.2003.12.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose hidden Markov models to model electropherograms from DNA sequencing equipment and perform basecalling. We model the state emission densities using artificial neural networks, and modify the Baum-Welch reestimation procedure to perform training. Moreover, we develop a method that exploits consensus sequences to label training data, thus minimizing the need for hand labeling. We propose the same method for locating an electropherogram in a longer DNA sequence. We also perform a careful study of the basecalling errors and propose alternative HMM topologies that might further improve performance. Our results demonstrate the potential of these models. Based on these results, we conclude by suggesting further research directions. (C) 2003 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 36
页数:14
相关论文
共 50 条
  • [1] Bayesian basecalling for DNA sequence analysis using hidden Markov models
    Liang, Kuo-ching
    Wang, Xiaodong
    Anastassiou, Dimitris
    [J]. 2006 40TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-4, 2006, : 1599 - 1604
  • [2] Bayesian basecalling for DNA sequence analysis using hidden Markov models
    Liang, Kuo-ching
    Wang, Xiaodong
    Anastassiou, Dimitris
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2007, 4 (03) : 430 - 440
  • [3] HEALTHCARE AUDIO EVENT CLASSIFICATION USING HIDDEN MARKOV MODELS AND HIERARCHICAL HIDDEN MARKOV MODELS
    Peng, Ya-Ti
    Lin, Ching-Yung
    Sun, Ming-Ting
    Tsai, Kun-Cheng
    [J]. ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1218 - +
  • [4] Markov models - hidden Markov models
    Grewal, Jasleen K.
    Krzywinski, Martin
    Altman, Naomi
    [J]. NATURE METHODS, 2019, 16 (09) : 795 - 796
  • [5] Markov models — hidden Markov models
    Jasleen K. Grewal
    Martin Krzywinski
    Naomi Altman
    [J]. Nature Methods, 2019, 16 : 795 - 796
  • [6] SIGNAL DENOISING WITH HIDDEN MARKOV MODELS USING HIDDEN MARKOV TREES AS OBSERVATION DENSITIES
    Milone, Diego H.
    Di Persia, Leandro E.
    Tomassi, Diego R.
    [J]. 2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 374 - 379
  • [7] Videotext OCR using hidden Markov models
    Natarajan, P
    Elmieh, B
    Schwartz, R
    Makhoul, J
    [J]. SIXTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, PROCEEDINGS, 2001, : 947 - 951
  • [8] Classic cryptanalysis using hidden Markov models
    Vobbilisetty, Rohit
    Di Troia, Fabio
    Low, Richard M.
    Visaggio, Corrado Aaron
    Stamp, Mark
    [J]. CRYPTOLOGIA, 2017, 41 (01) : 1 - 28
  • [9] Classification of chirps using Hidden Markov Models
    Balachandran, Nikhil
    Creusere, Charles
    [J]. 2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 545 - +
  • [10] Cough Detection Using Hidden Markov Models
    Teyhouee, Aydin
    Osgood, Nathaniel D.
    [J]. SOCIAL, CULTURAL, AND BEHAVIORAL MODELING, SBP-BRIMS 2019, 2019, 11549 : 266 - 276