THE EXTENSION OF RANK ORDERING CRITERIA WEIGHTING METHODS IN FUZZY ENVIRONMENT

被引:5
|
作者
Roszkowska, Ewa [1 ]
机构
[1] Univ Bialystok, Ul Warszawska 53, PL-15063 Bialystok, Poland
关键词
multi-criteria decision analysis; criteria weights; criteria ranking; fuzzy criteria ranking; fuzzy criteria weights; ATTRIBUTE DECISION-MAKING; OBJECTIVE INTEGRATED APPROACH; PROGRAMMING METHOD; INTERVAL; NORMALIZATION; INFORMATION; QUALITY; ELICITATION; JUDGMENTS; SMARTER;
D O I
10.37190/ord200206
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Weight elicitation is an important part of multi-criteria decision analysis. In real-life decision-making problems precise information is seldom available, and providing weights is often cognitively demanding as well as very time- and effort-consuming. The judgment of decision-makers (DMs) depends on their knowledge, skills, experience, personality, and available information. One of the weights determination approaches is ranking the criteria and converting the resulting ranking into numerical values. The best known and most widely used are rank sum, rank reciprocal and centroid weights techniques. The goal of this paper is to extend rank ordering criteria weighting methods for imprecise data, especially fuzzy data. Since human judgments, including preferences, are often vague and cannot be expressed by exact numerical values, the application of fuzzy concepts in elicitation weights is deemed relevant. The methods built on the ideas of rank order techniques take into account imprecise information about rank. The fuzzy rank sum, fuzzy rank reciprocal, and fuzzy centroid weights techniques are proposed. The weights obtained for each criterion are triangular fuzzy numbers. The proposed fuzzy rank ordering criteria weighting methods can be easily implemented into decision support systems. Numerical examples are provided to illustrate the practicality and validity of the proposed methods.
引用
收藏
页码:91 / 114
页数:24
相关论文
共 50 条
  • [1] Fuzzy criteria importance with weighting functions
    Peneva, Vania
    Popchev, Ivan
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2008, 61 (03): : 293 - 300
  • [2] ON FUZZY RANK-ORDERING IN POLYOPTIMIZATION
    WAGENKNECHT, M
    HARTMANN, K
    FUZZY SETS AND SYSTEMS, 1983, 11 (03) : 253 - 264
  • [3] Criteria for the rank ordering of fMRI Independent Components
    Esposito, F
    Formisano, E
    Cirillo, S
    Elefante, R
    Tedeschi, G
    Goebel, R
    Di Salle, F
    NEUROIMAGE, 2001, 13 (06) : S114 - S114
  • [4] Simulation-Based Evaluation of Criteria Rank-Weighting Methods in Multi-Criteria Decision-Making
    Alfares, Hesham K.
    Duffuaa, Salih O.
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2016, 15 (01) : 43 - 61
  • [6] On ordering of multicriterial objects based on rank criteria
    Gvozdik, A.A.
    Soviet journal of computer and systems sciences, 1992, 30 (05): : 60 - 69
  • [7] COMPARING METHODS FOR WEIGHTING DECISION CRITERIA
    NUTT, PC
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 1980, 8 (02): : 163 - 172
  • [8] Extension of the SPOTIS method for the rank reversal free decision-making under fuzzy environment
    Shekhovtsov, Andrii
    Paradowski, Bartosz
    Wieckowski, Jakub
    Kizielewicz, Bartlomiej
    Salabun, Wojciech
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 5595 - 5600
  • [9] A Typology Scheme for the Criteria Weighting Methods in MADM
    Hatefi, Mohammad Ali
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2023, 22 (04) : 1439 - 1488
  • [10] EMPLOYING CARDINAL RANK ORDERING OF CRITERIA IN MULTI-CRITERIA DECISION ANALYSIS
    Riabacke, Mona
    Danielson, Mats
    Larsson, Aron
    Ekenberg, Love
    UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 76 - 82