Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: An experimental study

被引:23
|
作者
Temirbayev, Amirkhan A. [1 ]
Nalibayev, Yerkebulan D. [1 ]
Zhanabaev, Zeinulla Zh. [1 ]
Ponomarenko, Vladimir I. [2 ]
Rosenblum, Michael [3 ]
机构
[1] al Farabi Kazakh Natl Univ, Dept Tech Phys, Alma Ata 050040, Kazakhstan
[2] Russian Acad Sci, Saratov Branch, Inst Radio Engn & Elect, Saratov 410019, Russia
[3] Univ Potsdam, Dept Phys & Astron, D-14476 Golm, Germany
关键词
MACROSCOPIC MUTUAL ENTRAINMENT; LIMIT-CYCLE OSCILLATORS; COLLECTIVE CHAOS; PARTIAL SYNCHRONIZATION; POPULATIONS; KURAMOTO; ONSET; MODEL; ARRAYS;
D O I
10.1103/PhysRevE.87.062917
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform experiments with 72 electronic limit-cycle oscillators, globally coupled via a linear or nonlinear feedback loop. While in the linear case we observe a standard Kuramoto-like synchronization transition, in the nonlinear case, with increase of the coupling strength, we first observe a transition to full synchrony and then a desynchronization transition to a quasiperiodic state. However, in this state the ensemble remains coherent so that the amplitude of the mean field is nonzero, but the frequency of the mean field is larger than frequencies of all oscillators. Next, we analyze effects of common periodic forcing of the linearly or nonlinearly coupled ensemble and demonstrate regimes when the mean field is entrained by the force whereas the oscillators are not.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Experiments on oscillator ensembles with global nonlinear coupling
    Temirbayev, Amirkhan A.
    Zhanabaev, Zeinulla Zh.
    Tarasov, Stanislav B.
    Ponomarenko, Vladimir I.
    Rosenblum, Michael
    PHYSICAL REVIEW E, 2012, 85 (01)
  • [2] Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling
    Rosenblum, Michael
    Pikovsky, Arkady
    PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [3] Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling
    Komarov, Maxim
    Pikovsky, Arkady
    PHYSICAL REVIEW E, 2015, 92 (02):
  • [4] GLOBAL BIFURCATIONS OF A PERIODICALLY FORCED NONLINEAR OSCILLATOR
    KEENER, JP
    GLASS, L
    JOURNAL OF MATHEMATICAL BIOLOGY, 1984, 21 (02) : 175 - 190
  • [5] Dynamics of multi-frequency oscillator ensembles with resonant coupling
    Lueck, S.
    Pikovsky, A.
    PHYSICS LETTERS A, 2011, 375 (28-29) : 2714 - 2719
  • [6] Experimental study of the nonlinear dynamics of a harmonically forced double layer
    Gyergyek, T
    PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 (02) : 175 - 190
  • [7] Complex dynamics of an oscillator ensemble with uniformly distributed natural frequencies and global nonlinear coupling
    Baibolatov, Yernur
    Rosenblum, Michael
    Zhanabaev, Zeinulla Zh.
    Pikovsky, Arkady
    PHYSICAL REVIEW E, 2010, 82 (01)
  • [8] ON THE EQUILIBRIA AND QUALITATIVE DYNAMICS OF A FORCED NONLINEAR OSCILLATOR WITH CONTACT AND FRICTION
    Leger, Alain
    Pratt, Elaine
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (02): : 501 - 527
  • [9] Oscillatory transient regime in the forced dynamics of a nonlinear auto oscillator
    Zhou, Yan
    Tiberkevich, Vasil
    Consolo, Giancarlo
    Iacocca, Ezio
    Azzerboni, Bruno
    Slavin, Andrei
    Akerman, Johan
    PHYSICAL REVIEW B, 2010, 82 (01)
  • [10] EXPERIMENTAL-STUDY OF FORCED CHUAS OSCILLATOR
    ITOH, M
    MURAKAMI, H
    CHUA, LO
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (06): : 1721 - 1742