In the present paper, the effect of time-periodic temperature/gravity modulation on the thermal instability in a rotating viscous fluid layer has been investigated by performing a weakly nonlinear stability analysis. The disturbances are expanded in terms of power series of amplitude of modulation, which has been assumed to be small. The amplitude equation, viz., the Ginzburg-Landau equation, for the stationary mode of convection is obtained and using the same, the effect of temperature/gravity modulation on heat transport has been investigated. The stability of the system is studied and the stream lines are plotted at different slow times as a function of the amplitude of modulation, Rossby number, and Prandtl number. It is found that the temperature/gravity modulation can be used as an external means to augment/diminish heat transport in a rotating system. Further, it is shown that rotation can be effectively used in regulating heat transport. [DOI: 10.1115/1.4006868]