Pricing arithmetic Asian options under jump diffusion CIR processes

被引:4
|
作者
Park, Jong Jun [1 ]
Jang, Hyun Jin [2 ]
Jang, Jiwook [3 ]
机构
[1] Samsung Elect, Senior Profess, Seoul 06765, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Sch Business Adm, Ulsan 44919, South Korea
[3] Macquarie Business Sch, Dept Actuarial Studies & Business Analyt, Sydney, NSW 2109, Australia
基金
新加坡国家研究基金会;
关键词
Jump diffusion CIR processes; Joint Fourier and Laplace transforms; Characteristic functions; Arithmetic Asian options;
D O I
10.1016/j.frl.2019.08.017
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We compute analytical formulae for pricing arithmetic Asian options under jump diffusion CIR processes. To derive the solution, we employ a characteristic function of the underlying asset price process and its integrated process that is not required to take the inversion Fourier or Laplace transform. We conduct numerical tests for validation of proposed formulae to confirm that they provide stable and accurate option prices with much faster computation time than the full Monte Carlo method.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] PRICING ASIAN OPTIONS FOR JUMP DIFFUSION
    Bayraktar, Erhan
    Xing, Hao
    [J]. MATHEMATICAL FINANCE, 2011, 21 (01) : 117 - 143
  • [2] Analytical pricing of discrete arithmetic Asian options under generalized CIR process with time change
    Tong, Zhigang
    Liu, Allen
    [J]. INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2018, 5 (01)
  • [3] PRICING BASKET AND ASIAN OPTIONS UNDER THE JUMP-DIFFUSION PROCESS
    Bae, Kwangil
    Kang, Jangkoo
    Kim, Hwa-Sung
    [J]. JOURNAL OF FUTURES MARKETS, 2011, 31 (09) : 830 - 854
  • [4] The pricing of foreign currency options under jump-diffusion processes
    Ahn, Chang Mo
    Cho, D. Chinhyung
    Park, Keehwan
    [J]. JOURNAL OF FUTURES MARKETS, 2007, 27 (07) : 669 - 695
  • [5] Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model
    Cai, Ning
    Kou, Steven
    [J]. OPERATIONS RESEARCH, 2012, 60 (01) : 64 - 77
  • [6] Pricing options under jump diffusion processes with fitted finite volume method
    Zhang, Kai
    Wang, Song
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 398 - 413
  • [7] PRICING VULNERABLE AMERICAN PUT OPTIONS UNDER JUMP-DIFFUSION PROCESSES
    Wang, Guanying
    Wang, Xingchun
    Liu, Zhongyi
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2017, 31 (02) : 121 - 138
  • [8] Pricing exchange options with correlated jump diffusion processes
    Petroni, Nicola Cufaro
    Sabino, Piergiacomo
    [J]. QUANTITATIVE FINANCE, 2020, 20 (11) : 1811 - 1823
  • [9] Pricing vulnerable options under jump diffusion processes using double Mellin transform
    Li, Cuixiang
    Liu, Huili
    Liu, Lixia
    Yao, Qiumei
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (03) : 703 - 716
  • [10] PRICING VULNERABLE OPTIONS WITH CORRELATED CREDIT RISK UNDER JUMP-DIFFUSION PROCESSES
    Tian, Lihui
    Wang, Guanying
    Wang, Xingchun
    Wang, Yongjin
    [J]. JOURNAL OF FUTURES MARKETS, 2014, 34 (10) : 957 - 979