Prediction of Total Knee Replacement and Diagnosis of Osteoarthritis by Using Deep Learning on Knee Radiographs: Data from the Osteoarthritis Initiative
被引:120
|
作者:
Leung, Kevin
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, New York, NY USANYU, Courant Inst Math Sci, New York, NY USA
Leung, Kevin
[1
]
Zhang, Bofei
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Ctr Data Sci, New York, NY USANYU, Courant Inst Math Sci, New York, NY USA
Zhang, Bofei
[2
]
Tan, Jimin
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Ctr Data Sci, New York, NY USANYU, Courant Inst Math Sci, New York, NY USA
Tan, Jimin
[2
]
Shen, Yiqiu
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Ctr Data Sci, New York, NY USANYU, Courant Inst Math Sci, New York, NY USA
Shen, Yiqiu
[2
]
Geras, Krzysztof J.
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Ctr Data Sci, New York, NY USA
NYU Langone Hlth, Bernard & Irene Schwartz Ctr Biomed Imaging, 660 1st Ave, New York, NY 10016 USA
NYU Langone Hlth, Dept Radiol, 660 1st Ave, New York, NY 10016 USANYU, Courant Inst Math Sci, New York, NY USA
Geras, Krzysztof J.
[2
,3
,4
]
Babb, James S.
论文数: 0引用数: 0
h-index: 0
机构:
NYU Langone Hlth, Bernard & Irene Schwartz Ctr Biomed Imaging, 660 1st Ave, New York, NY 10016 USA
NYU Langone Hlth, Dept Radiol, 660 1st Ave, New York, NY 10016 USANYU, Courant Inst Math Sci, New York, NY USA
Babb, James S.
[3
,4
]
Cho, Kyunghyun
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Courant Inst Math Sci, New York, NY USA
NYU, Ctr Data Sci, New York, NY USANYU, Courant Inst Math Sci, New York, NY USA
Cho, Kyunghyun
[1
,2
]
Chang, Gregory
论文数: 0引用数: 0
h-index: 0
机构:
NYU Langone Hlth, Dept Radiol, 660 1st Ave, New York, NY 10016 USANYU, Courant Inst Math Sci, New York, NY USA
Chang, Gregory
[4
]
Deniz, Cem M.
论文数: 0引用数: 0
h-index: 0
机构:
NYU Langone Hlth, Bernard & Irene Schwartz Ctr Biomed Imaging, 660 1st Ave, New York, NY 10016 USA
NYU Langone Hlth, Dept Radiol, 660 1st Ave, New York, NY 10016 USANYU, Courant Inst Math Sci, New York, NY USA
Deniz, Cem M.
[3
,4
]
机构:
[1] NYU, Courant Inst Math Sci, New York, NY USA
[2] NYU, Ctr Data Sci, New York, NY USA
[3] NYU Langone Hlth, Bernard & Irene Schwartz Ctr Biomed Imaging, 660 1st Ave, New York, NY 10016 USA
[4] NYU Langone Hlth, Dept Radiol, 660 1st Ave, New York, NY 10016 USA
Background: The methods for assessing knee osteoarthritis (OA) do not provide enough comprehensive information to make robust and accurate outcome predictions. Purpose: To develop a deep learning (DL) prediction model for risk of OA progression by using knee radiographs in patients who underwent total knee replacement (TKR) and matched control patients who did not undergo TKR. Materials and Methods: In this retrospective analysis that used data from the OA Initiative, a DL model on knee radiographs was developed to predict both the likelihood of a patient undergoing TKR within 9 years and Kellgren-Lawrence (KL) grade. Study participants included a case-control matched subcohort between 45 and 79 years. Patients were matched to control patients according to age, sex, ethnicity, and body mass index. The proposed model used a transfer learning approach based on the ResNet34 architecture with sevenfold nested cross-validation. Receiver operating characteristic curve analysis and conditional logistic regression assessed model performance for predicting probability and risk of TKR compared with clinical observations and two binary outcome prediction models on the basis of radiographic readings: KL grade and OA Research Society International (OARSI) grade. Results: Evaluated were 728 participants including 324 patients (mean age, 64 years +/- 8 [standard deviation]; 222 women) and 324 control patients (mean age, 64 years +/- 8; 222 women). The prediction model based on DL achieved an area under the receiver operating characteristic curve (AUC) of 0.87 (95% confidence interval [CI]: 0.85, 0.90), outperforming a baseline prediction model by using KL grade with an AUC of 0.74 (95% CI: 0.71, 0.77; P < .001). The risk for TKR increased with probability thata person will undergo TKR from the DL model (odds ratio [OR], 7.7; 95% CI: 2.3, 25; P < .001), KL grade (OR, 1.92; 95% CI: 1.17, 3.13; P =.009), and OARSI grade (OR, 1.20; 95% CI: 0.41, 3.50; P =.73). Conclusion: The proposed deep learning model better predicted risk of total knee replacement in osteoarthritis than did binary outcome models by using standard grading systems. (C) RSNA, 2020
机构:
Southern Med Univ, Nanfang Hosp, Dept Orthoped, Div Orthopaed Surg, Guangzhou, Guangdong, Peoples R China
Southern Med Univ, Zhujiang Hosp, Clin Res Ctr, Guangzhou, Guangdong, Peoples R ChinaSouthern Med Univ, Nanfang Hosp, Dept Orthoped, Div Orthopaed Surg, Guangzhou, Guangdong, Peoples R China
Wu, Tianxing
Dang, Qin
论文数: 0引用数: 0
h-index: 0
机构:
Southern Med Univ, Zhujiang Hosp, Clin Res Ctr, Guangzhou, Guangdong, Peoples R ChinaSouthern Med Univ, Nanfang Hosp, Dept Orthoped, Div Orthopaed Surg, Guangzhou, Guangdong, Peoples R China
Dang, Qin
Ding, Changhai
论文数: 0引用数: 0
h-index: 0
机构:
Southern Med Univ, Zhujiang Hosp, Clin Res Ctr, Guangzhou, Guangdong, Peoples R China
Univ Tasmania, Menzies Inst Med Res, Hobart, Tas, AustraliaSouthern Med Univ, Nanfang Hosp, Dept Orthoped, Div Orthopaed Surg, Guangzhou, Guangdong, Peoples R China