The internally calibrated electrochemical continuous enzyme assay (ICECEA, patent pending) was developed for the fast determination of enzyme activity unit (U). The assay depends on the integration of enzyme-free preassay calibration with the actual enzyme assay in one continuous experiment. Such integration resulted in a uniquely shaped amperometric trace that allowed for the selective picomolar determination of redox enzymes. The ICECEA worked because the preassay calibration did not interfere with the enzyme assay allowing both measurements to be performed in succession in the same solution and at the same electrode. The method displayed a good accuracy (relative error, <3%) and precision (relative standard deviation (RSD), <3%) when tested with different working electrodes (carbon nanotubes/chitosan, glassy carbon, platinum) and enzymes (alcohol dehydrogenase, ADH; lactate dehydrogenase, LDH; xanthine oxidase, XOx; glucose oxidase, GOx). The limit of detection for the ADH, LDH, XOx, and GOx was equal to 0.18, 0.14, 0.0031, and 0.11 U L-1 (or 4.2, 0.72, 89, and 6.0 pM), respectively. The simplicity, reliability, and short analysis time make the ICECEA competitive with the optical enzyme assays currently in use.