Signatures of multiple jumps in surface diffusion on honeycomb surfaces

被引:5
|
作者
Townsend, Peter S. M. [1 ,2 ]
Avidor, Nadav [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Dept Phys, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Rutgers State Univ, Dept Chem & Chem Biol, 123 Bevier Rd, Piscataway, NJ 08854 USA
基金
英国工程与自然科学研究理事会;
关键词
NEUTRON-SCATTERING; SELF-DIFFUSION; HYDROGEN-ATOMS; QUANTUM; ADSORPTION; MOTION; CARBON; TEMPERATURE; RESOLUTION; PALLADIUM;
D O I
10.1103/PhysRevB.99.115419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The jump distribution, a property of the motion of adsorbates on a corrugated surface, contains crucial information on adsorbate-substrate energy dissipation processes. To provide a means to study jump distributions in a honeycomb array of adsorption sites, we derive analytical expressions for the intermediate scattering function (ISF) describing jump diffusion taking into account jumps up to fourth-nearest neighbor in length. To enable testing the analytical expressions against experimental or simulated data, we develop a global fitting routine that can be applied to experimental or simulated ISFs to infer multiple jumps. We demonstrate the analysis method by studying the jump distribution arising from classical Langevin molecular dynamics simulations of two model systems, cyclopentadienyl (Cp) on Cu(111), and deuterium (D) on Pd(111). The simulations and analysis confirm that diffusion of Cp/Cu(111) at a surface temperature T-s = 135 K takes place in a regime of predominantly single jumps. Classical simulations of D/Pd(111) at T-s = 350 K, with a realistic Langevin friction, suggest that the diffusion of D/Pd(111) involves a high proportion of multiple jumps. The parameters that apply to D/Pd(111) are typical of the interaction of hydrogen atoms with close-packed transition metal surfaces, suggesting that long jumps are a general feature of the high temperature surface diffusion of hydrogen.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A MODEL STUDY OF HYDROGEN DIFFUSION ON SURFACES - BARRIER RECROSSING, MULTIPLE JUMPS AND RANDOMIZATION
    WAHNSTROM, G
    HAUG, K
    METIU, H
    CHEMICAL PHYSICS LETTERS, 1988, 148 (2-3) : 158 - 163
  • [2] Long jumps in surface diffusion
    Antczak, G
    Ehrlich, G
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 276 (01) : 1 - 5
  • [3] Chemical surface diffusion with long jumps
    Torri, M
    Ferrando, R
    CHEMICAL PHYSICS LETTERS, 1997, 274 (04) : 323 - 327
  • [4] Role of long jumps in surface diffusion
    Braun, OM
    Ferrando, R
    PHYSICAL REVIEW E, 2002, 65 (06):
  • [5] ATOMIC JUMPS IN SURFACE-DIFFUSION
    EHRLICH, G
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1989, 197 : 17 - COLL
  • [6] Atomic jumps during surface diffusion
    Ferron, J.
    Miranda, R.
    de Miguel, J. J.
    PHYSICAL REVIEW B, 2009, 79 (24):
  • [7] Long jumps in the surface diffusion of large molecules
    Schunack, M.
    Linderoth, T.R.
    Rosei, F.
    Lægsgaard, E.
    Stensgaard, I.
    Besenbacher, F.
    Physical Review Letters, 2002, 88 (15) : 156102 - 156102
  • [8] Long jumps in surface diffusion: A microscopic derivation of the jump frequencies
    Azzouz, M
    Kreuzer, HJ
    Shegelski, MRA
    PHYSICAL REVIEW LETTERS, 1998, 80 (07) : 1477 - 1480
  • [9] MULTIPLE JUMPS AND VACANCY DIFFUSION IN A FACE-CENTERED-CUBIC METAL
    DELORENZI, G
    ERCOLESSI, F
    EUROPHYSICS LETTERS, 1992, 20 (04): : 349 - 355
  • [10] Signatures of foliated surface bundles and the symplectomorphism groups of surfaces
    Kotschick, D
    Morita, S
    TOPOLOGY, 2005, 44 (01) : 131 - 149