Rumen microbial (meta) genomics and its application to ruminant production

被引:147
|
作者
Morgavi, D. P. [1 ]
Kelly, W. J. [2 ]
Janssen, P. H. [2 ]
Attwood, G. T. [2 ]
机构
[1] INRA, Herbivores UR1213, F-63122 St Genes Champanelle, France
[2] AgResearch, Ruminant Nutr & Anim Hlth, Palmerston North 4442, New Zealand
关键词
rumen; microbial; genomics; metagenomics; nutrition; 16S RIBOSOMAL-RNA; BOVINE RUMEN; METHANOBREVIBACTER-SMITHII; FIBROBACTER-SUCCINOGENES; GASTROINTESTINAL-TRACT; BIOCHEMICAL-PROPERTIES; CELLULOSE DEGRADATION; PHYLOGENETIC ANALYSIS; METHANOGENESIS GENES; BACTERIAL DIVERSITY;
D O I
10.1017/S1751731112000419
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Meat and milk produced by ruminants are important agricultural products and are major sources of protein for humans. Ruminant production is of considerable economic value and underpins food security in many regions of the world. However, the sector faces major challenges because of diminishing natural resources and ensuing increases in production costs, and also because of the increased awareness of the environmental impact of farming ruminants. The digestion of feed and the production of enteric methane are key functions that could be manipulated by having a thorough understanding of the rumen microbiome. Advances in DNA sequencing technologies and bioinformatics are transforming our understanding of complex microbial ecosystems, including the gastrointestinal tract of mammals. The application of these techniques to the rumen ecosystem has allowed the study of the microbial diversity under different dietary and production conditions. Furthermore, the sequencing of genomes from several cultured rumen bacterial and archaeal species is providing detailed information about their physiology. More recently, metagenomics, mainly aimed at understanding the enzymatic machinery involved in the degradation of plant structural polysaccharides, is starting to produce new insights by allowing access to the total community and sidestepping the limitations imposed by cultivation. These advances highlight the promise of these approaches for characterising the rumen microbial community structure and linking this with the functions of the rumen microbiota. Initial results using high-throughput culture-independent technologies have also shown that the rumen microbiome is far more complex and diverse than the human caecum. Therefore, cataloguing its genes will require a considerable sequencing and bioinformatic effort. Nevertheless, the construction of a rumen microbial gene catalogue through metagenomics and genomic sequencing of key populations is an attainable goal. A rumen microbial gene catalogue is necessary to understand the function of the microbiome and its interaction with the host animal and feeds, and it will provide a basis for integrative microbiome-host models and inform strategies promoting less-polluting, more robust and efficient ruminants.
引用
收藏
页码:184 / 201
页数:18
相关论文
共 50 条
  • [1] Rumen microbial (meta)genomics and its application to ruminant production
    Morgavi, D. P.
    Kelly, W. J.
    Janssen, P. H.
    Attwood, G. T.
    INRA PRODUCTIONS ANIMALES, 2013, 26 (04): : 347 - 362
  • [2] Exploitation of rumen microbial enzymes to benefit ruminant and non-ruminant animal production
    Cheng, KJ
    Selinger, LB
    McAllister, T
    Yanke, LJ
    Bae, HD
    Shin, HT
    Goto, M
    Takenaka, A
    Forsberg, CW
    Shelford, JA
    RUMEN MICROBES AND DIGESTIVE PHYSIOLOGY IN RUMINANTS, 1997, : 25 - 34
  • [3] Rumen microbial genomics
    Morrison, M
    Nelson, KE
    APPLICATIONS OF GENE-BASED TECHNOLOGIES FOR IMPROVING ANIMAL PRODUCTION AND HEALTH IN DEVELOPING COUNTRIES, 2005, : 349 - 355
  • [4] Effects of Essential Oils on Rumen Fermentation, Microbial Ecology and Ruminant Production
    Patra, Amlan K.
    ASIAN JOURNAL OF ANIMAL AND VETERINARY ADVANCES, 2011, 6 (05): : 416 - 428
  • [5] The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production
    Patra, A. K.
    Saxena, J.
    NUTRITION RESEARCH REVIEWS, 2009, 22 (02) : 204 - 219
  • [6] RUMEN MICROBIAL POLYNUCLEOTIDE SYNTHESIS AND ITS POSSIBLE ROLE IN RUMINANT NITROGEN UTILIZATION
    ELLIS, WC
    PFANDER, WH
    NATURE, 1965, 205 (4975) : 974 - &
  • [7] Use of an in vitro rumen gas production technique to evaluate microbial fermentation of ruminant feeds and its impact on fermentation products
    Getachew, G
    DePeters, EJ
    Robinson, PH
    Fadel, JG
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2005, 123 : 547 - 559
  • [8] RUMEN MICROBIOLOGY, BIOTECHNOLOGY AND RUMINANT NUTRITION - THE APPLICATION OF RESEARCH FINDINGS TO A COMPLEX MICROBIAL ECOSYSTEM
    WALLACE, RJ
    FEMS MICROBIOLOGY LETTERS, 1992, 100 (1-3) : 529 - 534
  • [9] PRODUCTION OF TRICARBALLYLIC ACID BY RUMEN MICROORGANISMS AND ITS POTENTIAL TOXICITY IN RUMINANT TISSUE METABOLISM
    RUSSELL, JB
    FORSBERG, N
    BRITISH JOURNAL OF NUTRITION, 1986, 56 (01) : 153 - 162
  • [10] From microbial genomics to meta-genomics
    Covacci, A
    Kennedy, GC
    Cormack, B
    Rappuoli, R
    Falkow, S
    DRUG DEVELOPMENT RESEARCH, 1997, 41 (3-4) : 180 - 192