Creep and creep-rupture of Alloy 617

被引:25
|
作者
Wright, J. K. [1 ]
Lillo, T. M. [1 ]
Wright, R. N. [1 ]
Kim, Woo-Gon [2 ]
Sah, In-Jin [2 ]
Kim, Eung-Seon [2 ]
Park, Ji-Yeon [2 ]
Kim, Min-Hwan [2 ]
机构
[1] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA
[2] Korean Atom Energy Res Inst, 989-111 Daedeok Daero, Daejeon 34057, South Korea
基金
新加坡国家研究基金会;
关键词
Alloy; 617; Creep; Creep-rupture; Larson-Miller; Monkman-Grant; BEHAVIOR; HELIUM; AIR;
D O I
10.1016/j.nucengdes.2017.07.014
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The Ni-Cr-Mo-Co material Alloy 617 is the leading candidate for VHTR intermediate heat exchangers operating above 750 degrees C. Time-dependent properties are an important consideration in qualifying the alloy for construction of nuclear components. Creep behavior of several different heats of Alloy 617 has been evaluated in the temperature range of 800-1000 degrees C. Power law creep behavior was observed for the minimum creep rate, with a stress exponent of 5.6 and activation energy of approximately 400 kcal/Mol. The Monkman-Grant approach relating minimum creep rate to time to rupture gave a reasonable representation of the data for all of the testing with a slope of -0.84. Similarly, a modified Monkman-Grant fit the strain to failure data reasonably well. A Larson-Miller analysis was carried out to compare rupture behavior determined in the current experiments and historical data with wellk-nown provenance over a wide range of conditions. It appears that the properties of modern heats of material are near the lower bound of rupture behavior when all of the data are considered in the same analysis. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 146
页数:5
相关论文
共 50 条
  • [1] THE IMPACT OF GEOMETRIC DISCONTINUITIES ON ALLOY 617 CREEP-RUPTURE BEHAVIOR
    Rupp, Ryann E.
    McMurtrey, Michael D.
    [J]. PROCEEDINGS OF THE ASME 2020 PRESSURE VESSELS & PIPING CONFERENCE (PVP2020), VOL 1, 2020,
  • [2] CREEP AND CREEP-RUPTURE LIFE
    LOCHMANN, WJ
    [J]. HYDROCARBON PROCESSING, 1972, 51 (08): : 71 - &
  • [3] CREEP AND CREEP-RUPTURE TESTING
    SMITH, GV
    BENZ, WG
    MILLER, RF
    [J]. PROCEEDINGS-AMERICAN SOCIETY FOR TESTING AND MATERIALS, 1947, 47 : 615 - 638
  • [4] A STUDY OF CREEP AND CREEP-RUPTURE OF POLYCARBONATE
    CHALLA, SR
    PROGELHOF, RC
    [J]. POLYMER ENGINEERING AND SCIENCE, 1995, 35 (06): : 546 - 554
  • [5] FUNDAMENTALS OF CREEP AND CREEP-RUPTURE IN METALS
    MCLEAN, D
    [J]. JOURNAL OF THE INSTITUTE OF METALS, 1965, 93 : 1099 - &
  • [6] CREEP AND CREEP-RUPTURE OF METALLIC COMPOSITES
    ROBINSON, DN
    BINIENDA, WK
    MITIKAVUMA, M
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 1992, 118 (08): : 1646 - 1660
  • [7] FUNDAMENTALS OF CREEP AND CREEP-RUPTURE IN METALS
    BUTRYMOW.DB
    [J]. PHYSICS TODAY, 1966, 19 (05) : 100 - &
  • [8] Creep deformation and rupture behavior of Alloy 617
    Kim, Woo-Gon
    Park, Jae-Young
    Ekaputra, I. M. W.
    Kim, Seon-Jin
    Kim, Min-Hwan
    Kim, Yong-Wan
    [J]. ENGINEERING FAILURE ANALYSIS, 2015, 58 : 441 - 451
  • [9] CREEP-RUPTURE OF STRUCTURES
    LECKIE, FA
    HAYHURST, DR
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1974, 340 (1622): : 323 - &
  • [10] ON THE CREEP-RUPTURE ANALYSIS
    CHRZANOWSKI, M
    DUSZA, E
    KOLCZUGA, M
    [J]. ARCHIVES OF MECHANICS, 1987, 39 (1-2): : 85 - 93