Bayesian Multimodel Inference by RJMCMC: A Gibbs Sampling Approach

被引:30
|
作者
Barker, Richard J. [1 ]
Link, William A. [2 ]
机构
[1] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
[2] USGS Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA
来源
AMERICAN STATISTICIAN | 2013年 / 67卷 / 03期
关键词
Bayes factors; Posterior model probabilities; Reversible jump Markov chain Monte Carlo; MONTE-CARLO METHODS; MODEL CHOICE; LIKELIHOOD;
D O I
10.1080/00031305.2013.791644
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian multimodel inference treats a set of candidate models as the sample space of a latent categorical random variable, sampled once; the data at hand are modeled as having been generated according to the sampled model. Model selection and model averaging are based on the posterior probabilities for the model set. Reversible-jump Markov chain Monte Carlo (RJMCMC) extends ordinary MCMC methods to this meta-model. We describe a version of RJMCMC that intuitively represents the process as Gibbs sampling with alternating updates of a categorical variable M (for Model) and a "palette" of parameters psi, from which any of the model-specific parameters can be calculated. Our representation makes plain how model-specific Monte Carlo outputs (analytical or numerical) can be post-processed to compute model weights or Bayes factors. We illustrate the procedure with several examples.
引用
收藏
页码:150 / 156
页数:7
相关论文
共 50 条
  • [1] Particle Gibbs sampling for Bayesian phylogenetic inference
    Wang, Shijia
    Wang, Liangliang
    [J]. BIOINFORMATICS, 2021, 37 (05) : 642 - 649
  • [2] PRODUCTION UNCERTAINTIES MODELLING BY BAYESIAN INFERENCE USING GIBBS SAMPLING
    Azizi, A.
    bin Ali, A. Y.
    Ping, L. W.
    Mohammadzadeh, M.
    [J]. SOUTH AFRICAN JOURNAL OF INDUSTRIAL ENGINEERING, 2015, 26 (03): : 27 - 40
  • [3] BAYESIAN-INFERENCE IN THRESHOLD MODELS USING GIBBS SAMPLING
    SORENSEN, DA
    ANDERSEN, S
    GIANOLA, D
    KORSGAARD, I
    [J]. GENETICS SELECTION EVOLUTION, 1995, 27 (03) : 229 - 249
  • [4] Imprecise global sensitivity analysis using bayesian multimodel inference and importance sampling
    Zhang, Jiaxin
    TerMaath, Stephanie
    Shields, Michael D.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 148
  • [5] Bayesian Inference and RJMCMC in Structural Dynamics: On Experimental Data
    Tiboaca, D.
    Green, P. L.
    Barthorpe, R. J.
    Antoniadou, I.
    Worden, K.
    [J]. MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2016, : 23 - 36
  • [6] Bayesian inference for partially accelerated life tests using Gibbs sampling
    Madi, MT
    [J]. MICROELECTRONICS AND RELIABILITY, 1997, 37 (08): : 1165 - 1168
  • [7] Bayesian inference on variance components using Gibbs sampling with various priors
    Lee, C
    Wang, CD
    [J]. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2001, 14 (08): : 1051 - 1056
  • [8] Accelerating Bayesian Inference on Structured Graphs Using Parallel Gibbs Sampling
    Ko, Glenn G.
    Chai, Yuji
    Rutenbar, Rob A.
    Brooks, David
    Wei, Gu-Yeon
    [J]. 2019 29TH INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2019, : 159 - 165
  • [9] Bayesian inference using Gibbs sampling for Window version (WinBUGS), software for Bayesian analysis using MCMC method and Gibbs sampler
    Choy, S. T. Boris
    Chan, Jennifer S. K.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2008, 50 (02) : 135 - 146
  • [10] Bayesian inference in the semiparametric log normal frailty model using Gibbs sampling
    Inge Riis Korsgaard
    Per Madsen
    Just Jensen
    [J]. Genetics Selection Evolution, 30 (3)