An improved parameter identification approach for piecewise affine model

被引:3
|
作者
Li, Liang [1 ,2 ]
Dong, Wei [2 ]
Ji, Yindong [2 ]
Zhang, Zengke [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
关键词
Parameter identification; PWA model; Small-sample case; Hough transform; Variable-threshold; Track circuit; FAULT-DETECTION; SYSTEMS;
D O I
10.1016/j.conengprac.2012.09.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study proposes a high-efficient approach to identify the piecewise affine (PWA) model. The proposed approach constitutes two major steps, initial estimation and refinement process. In the initial estimation, Hough Transform (HT) is adopted to generate a group of submodel candidates; then a variable-threshold technique is applied to pick up the real submodel. In the refinement process, not only the distance constraint between data points and submodel's hyperplanes but also the clustering constraint between data points in regression regions are considered. An efficient algorithm is presented to alternately refine the submodel's parameters and the subregression sets. In the case study, the proposed approach is used to identify the fault model of the track circuit in high-speed railway. Analysis shows that the proposed approach has linear time complexity and exhibits superior data availability in small-sample case. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:54 / 64
页数:11
相关论文
共 50 条
  • [1] Zonotope parameter identification for piecewise affine systems
    Wang Jianhong
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2020, 31 (05) : 1077 - 1084
  • [2] Zonotope parameter identification for piecewise affine systems
    WANG Jianhong
    [J]. Journal of Systems Engineering and Electronics, 2020, 31 (05) : 1077 - 1084
  • [3] Zonotope parameter identification for piecewise affine system
    Jianwang, Hong
    Ramirez-Mendoza, Ricardo A.
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2020, 8 (01) : 232 - 240
  • [4] A greedy approach to identification of piecewise affine models
    Bemporad, A
    Garulli, A
    Paoletti, S
    Vicino, A
    [J]. HYBRID SYSTEMS: COMPUTATION AND CONTROL, PROCEEDINGS, 2003, 2623 : 97 - 112
  • [5] Data classification and parameter estimation for the identification of piecewise affine models
    Bemporad, A
    Garulli, A
    Paoletti, S
    Vicino, A
    [J]. 2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 20 - 25
  • [6] Piecewise affine systems identification: a learning theoretical approach
    Prandini, M
    [J]. 2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 3844 - 3849
  • [7] Parameter identification for piecewise-affine fuzzy models in noisy environment
    Simani, S
    Fantuzzi, C
    Rovatti, R
    Beghelli, S
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1999, 22 (1-2) : 149 - 167
  • [8] Parameter identification for piecewise-affine fuzzy models in noisy environment
    Engineering Department, University of Ferrara, via Saragat 1, 44100 Ferrara, Italy
    不详
    [J]. Int J Approximate Reasoning, 1 (149-167):
  • [9] An Optimal Regions-based Identification Approach for Piecewise Affine Model of Nonlinear Systems
    Ma Xinda
    Song Chunyue
    Zhu Xinjian
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2258 - 2262
  • [10] A bounded-error approach to piecewise affine system identification
    Bemporad, A
    Garulli, A
    Paoletti, S
    Vicino, A
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) : 1567 - 1580