Power System State Forecasting Using Regression Analysis

被引:0
|
作者
Hassanzadeh, Mohammad [1 ]
Evrenosoglu, Cansin Yaman [1 ]
机构
[1] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
关键词
MODEL; IMPLEMENTATION; ESTIMATOR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a block-diagonal state transition matrix based on regression analysis. The state transition matrix is used to forecast the system state, which is subsequently corrected through extended Kalman filter in classical dynamic state estimation (DSE). The transition matrix is updated when new online measurement data are available. The forecasting accuracy can be traded off according to the frequency of the updates. The tests on IEEE 14- and 30-bus system show improvement in the state forecasting accuracy when compared to the existing state forecasting methods in dynamic state estimation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Solar Power Probabilistic Forecasting by Using Multiple Linear Regression Analysis
    Abuella, Mohamed
    Chowdhury, Badrul
    IEEE SOUTHEASTCON 2015, 2015,
  • [2] Power system state forecasting using machine learning techniques
    Debottam Mukherjee
    Samrat Chakraborty
    Sandip Ghosh
    Electrical Engineering, 2022, 104 : 283 - 305
  • [3] Power system state forecasting using artificial neural networks
    Kumar, DMV
    Srivastava, SC
    ELECTRIC MACHINES AND POWER SYSTEMS, 1999, 27 (06): : 653 - 664
  • [4] Power system state forecasting using machine learning techniques
    Mukherjee, Debottam
    Chakraborty, Samrat
    Ghosh, Sandip
    ELECTRICAL ENGINEERING, 2022, 104 (01) : 283 - 305
  • [5] Regression Model Forecasting for Time-Skew Problems in Power System State Estimation
    Trevorrow, Gavin
    Zhou, Ning
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [6] Comparative Analysis Using Multiple Regression Models for Forecasting Photovoltaic Power Generation
    Abdullah, Burhan U. Din
    Khanday, Shahbaz Ahmad
    Islam, Nair Ul
    Lata, Suman
    Fatima, Hoor
    Nengroo, Sarvar Hussain
    ENERGIES, 2024, 17 (07)
  • [7] Power System State Forecasting using Fuzzy-Viterbi Algorithm
    Livani, Hanif
    Jafarzadeh, Saeed
    Fadali, M. Sami
    Evrenosoglu, Cansin Yaman
    2014 IEEE PES GENERAL MEETING - CONFERENCE & EXPOSITION, 2014,
  • [8] POWER-SYSTEM OPERATING STATE FORECASTING FOR SECURITY ANALYSIS APPLICATIONS
    FALCAO, DM
    BEZERRA, UH
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1991, 13 (06) : 330 - 336
  • [9] Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts
    Nielsen, HA
    Madsen, H
    Nielsen, TS
    WIND ENERGY, 2006, 9 (1-2) : 95 - 108
  • [10] Quantile regression in uncertainty analysis of wind power forecasting
    Yan, Jie
    Liu, Yongqian
    Han, Shuang
    Wang, Bo
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2013, 34 (12): : 2101 - 2107