Efficient circuit implementation of quantum walks on non-degree-regular graphs

被引:15
|
作者
Loke, T. [1 ]
Wang, J. B. [1 ]
机构
[1] Univ Western Australia, Sch Phys, Nedlands, WA 6009, Australia
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 04期
关键词
D O I
10.1103/PhysRevA.86.042338
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents a set of highly efficient quantum circuits for discrete-time quantum walks on non-degree-regular graphs. In particular, we describe a general procedure for constructing highly efficient quantum circuits for quantum walks on star graphs of any degree and Cayley trees with an arbitrary number of layers, which are nonsparse in general. We also show how to modify these circuits to implement a full quantum-walk search algorithm on these graphs, without reference to a "black-box" oracle. This provides a practically implementable method to explore quantum-walk-based algorithms with the aim of eventual real-world applications.
引用
收藏
页数:7
相关论文
共 48 条
  • [1] Efficient quantum circuit implementation of quantum walks
    Douglas, B. L.
    Wang, J. B.
    PHYSICAL REVIEW A, 2009, 79 (05):
  • [2] Quantum Walks on Regular Graphs and Eigenvalues
    Godsil, Chris
    Guo, Krystal
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [3] Szegedy quantum walks with memory on regular graphs
    Dan Li
    Ying Liu
    Yu-Guang Yang
    Juan Xu
    Jia-Bin Yuan
    Quantum Information Processing, 2020, 19
  • [4] Entanglement in coined quantum walks on regular graphs
    Carneiro, I
    Loo, M
    Xu, XB
    Girerd, M
    Kendon, V
    Knight, PL
    NEW JOURNAL OF PHYSICS, 2005, 7
  • [5] Generic quantum walks with memory on regular graphs
    Li, Dan
    Mc Gettrick, Michael
    Gao, Fei
    Xu, Jie
    Wen, Qiao-Yan
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [6] Szegedy quantum walks with memory on regular graphs
    Li, Dan
    Liu, Ying
    Yang, Yu-Guang
    Xu, Juan
    Yuan, Jia-Bin
    QUANTUM INFORMATION PROCESSING, 2020, 19 (01)
  • [7] Arbitrated Quantum Signature Scheme with Quantum Walks on Regular Graphs
    Shi Ronghua
    Feng Yanyan
    Shi Jinjing
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (01) : 89 - 97
  • [8] Quantum walks on regular graphs with realizations in a system of anyons
    Radhakrishnan Balu
    Quantum Information Processing, 21
  • [9] Quantum walks on regular graphs with realizations in a system of anyons
    Balu, Radhakrishnan
    QUANTUM INFORMATION PROCESSING, 2022, 21 (05)
  • [10] Quantum Search Algorithm for Exceptional Vertexes in Regular Graphs and its Circuit Implementation
    Yumin Dong
    Zhixin Liu
    Jinlei Zhang
    International Journal of Theoretical Physics, 2021, 60 : 2723 - 2732