Sparse principal component regression with adaptive loading

被引:21
|
作者
Kawano, Shuichi [1 ,4 ]
Fujisawa, Hironori [2 ,4 ]
Takada, Toyoyuki [3 ,4 ]
Shiroishi, Toshihiko [3 ,4 ]
机构
[1] Univ Electrocommun, Grad Sch Informat Syst, Tokyo 1828585, Japan
[2] Inst Stat Math, Tachikawa, Tokyo 1908562, Japan
[3] Natl Inst Genet, Mammalian Genet Lab, Mishima, Shizuoka 4118540, Japan
[4] Res Org Informat & Syst, Transdisciplinary Res Integrat Ctr, Minato Ku, Tokyo 1050001, Japan
关键词
Dimension reduction; Identifiability; Principal component regression; Regularization; Sparsity; SIMULTANEOUS DIMENSION REDUCTION; VARIABLE SELECTION; REGULARIZATION;
D O I
10.1016/j.csda.2015.03.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Principal component regression (PCR) is a two-stage procedure that selects some principal components and then constructs a regression model regarding them as new explanatory variables. Note that the principal components are obtained from only explanatory variables and not considered with the response variable. To address this problem, we propose the sparse principal component regression (SPCR) that is a one-stage procedure for PCR. SPCR enables us to adaptively obtain sparse principal component loadings that are related to the response variable and select the number of principal components simultaneously. SPCR can be obtained by the convex optimization problem for each parameter with the coordinate descent algorithm. Monte Carlo simulations and real data analyses are performed to illustrate the effectiveness of SPCR. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 203
页数:12
相关论文
共 50 条
  • [1] Principal component-guided sparse regression
    Tay, Jingyi K.
    Friedman, Jerome
    Tibshirani, Robert
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1222 - 1257
  • [2] On General Adaptive Sparse Principal Component Analysis
    Leng, Chenlei
    Wang, Hansheng
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (01) : 201 - 215
  • [3] ADAPTIVE WEIGHTED SPARSE PRINCIPAL COMPONENT ANALYSIS
    Yi, Shuangyan
    Liang, Yongsheng
    Liu, Wei
    Meng, Fanyang
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [4] Sparse principal component regression for generalized linear models
    Kawano, Shuichi
    Fujisawa, Hironori
    Takada, Toyoyuki
    Shiroishi, Toshihiko
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 : 180 - 196
  • [5] Joint sparse principal component regression with robust property
    Qi, Kai
    Tu, Jingwen
    Yang, Hu
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187
  • [6] Performances of some high dimensional regression methods: sparse principal component regression
    Kurnaz, Fatma Sevinc
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (09) : 2529 - 2543
  • [7] Sparse functional principal component analysis in a new regression framework
    Nie, Yunlong
    Cao, Jiguo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 152
  • [8] Sparse principal component regression via singular value decomposition approach
    Shuichi Kawano
    [J]. Advances in Data Analysis and Classification, 2021, 15 : 795 - 823
  • [9] Sparse principal component regression via singular value decomposition approach
    Kawano, Shuichi
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (03) : 795 - 823
  • [10] Principal Component Regression by Principal Component Selection
    Lee, Hosung
    Park, Yun Mi
    Lee, Seokho
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2015, 22 (02) : 173 - 180