Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities

被引:0
|
作者
Ghosal, S
Van der Vaart, AW
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Free Univ Amsterdam, Div Math & Comp Sci, NL-1081 HV Amsterdam, Netherlands
来源
ANNALS OF STATISTICS | 2001年 / 29卷 / 05期
关键词
bracketing; Dirichlet mixture; entropy; maximum likelihood; mixture of normals; posterior distribution; rate of convergence; sieve;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the rates of convergence of the maximum likelihood estimator (MLE) and posterior distribution in density estimation problems, where the densities are location or location-scale mixtures of normal distributions with the scale parameter lying between two positive numbers. The true density is also assumed to lie in this class with the true mixing distribution either compactly supported or having sub-Gaussian tails. We obtain bounds for Hellinger bracketing entropies for this class, and from these bounds, we deduce the convergence rates of (sieve) MLEs in Hellinger distance. The rate turns out to be (log n)(kappa)/rootn, where kappagreater than or equal to1 is a constant that depends on the type of mixtures and the choice of the sieve. Next, we consider a Dirichlet mixture of normals as a prior on the unknown density. We estimate the prior probability of a certain Kullback-Leibler type neighborhood and then invoke a general theorem that computes the posterior convergence rate in terms the growth rate of the Hellinger entropy and the concentration rate of the prior. The posterior distribution is also seen to converge at the rate (log n)(kappa)/rootn in, where kappa now depends on the tail behavior of the base measure of the Dirichlet process.
引用
收藏
页码:1233 / 1263
页数:31
相关论文
共 50 条
  • [1] GENERALIZED MAXIMUM LIKELIHOOD ESTIMATION OF NORMAL MIXTURE DENSITIES
    Zhang, Cun-Hui
    [J]. STATISTICA SINICA, 2009, 19 (03) : 1297 - 1318
  • [2] Convergence Rates of Active Learning for Maximum Likelihood Estimation
    Chaudhuri, Kamalika
    Kakade, Sham M.
    Netrapalli, Praneeth
    Sanghavi, Sujay
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [3] GENERAL MAXIMUM LIKELIHOOD EMPIRICAL BAYES ESTIMATION OF NORMAL MEANS
    Jiang, Wenhua
    Zhang, Cun-Hui
    [J]. ANNALS OF STATISTICS, 2009, 37 (04): : 1647 - 1684
  • [4] A constrained maximum likelihood estimation for skew normal mixtures
    Libin Jin
    Sung Nok Chiu
    Jianhua Zhao
    Lixing Zhu
    [J]. Metrika, 2023, 86 : 391 - 419
  • [5] MAXIMUM LIKELIHOOD PARAMETER ESTIMATION FOR THE MIXTURES OF NORMAL DISTRIBUTIONS
    Rahman, Mezbahur
    Mahzabeen, Sabiha
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2018, 53 (05) : 501 - 518
  • [6] MAXIMUM LIKELIHOOD ESTIMATION FOR MIXTURES OF 2 NORMAL DISTRIBUTIONS
    DICK, NP
    BOWDEN, DC
    [J]. BIOMETRICS, 1973, 29 (03) : 610 - 610
  • [7] MAXIMUM LIKELIHOOD ESTIMATION FOR MIXTURES OF 2 NORMAL DISTRIBUTIONS
    DICK, NP
    BOWDEN, DC
    [J]. BIOMETRICS, 1973, 29 (04) : 781 - 790
  • [8] A constrained maximum likelihood estimation for skew normal mixtures
    Jin, Libin
    Chiu, Sung Nok
    Zhao, Jianhua
    Zhu, Lixing
    [J]. METRIKA, 2023, 86 (04) : 391 - 419
  • [9] On general maximum likelihood empirical Bayes estimation of heteroscedastic IID normal means
    Jiang, Wenhua
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 2272 - 2297
  • [10] Bayes and maximum likelihood for -Wasserstein deconvolution of Laplace mixtures
    Scricciolo, Catia
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 333 - 362