Further Generalization of the Extended Hurwitz-Lerch Zeta Functions

被引:6
|
作者
Parmar, Rakesh K. [1 ]
Choi, Junesang [2 ]
Purohit, Sunil Dutt [3 ]
机构
[1] Govt Coll Engn & Technol, Dept Math, Bikaner 33400, India
[2] Dongguk Univ, Dept Math, Gyeongju 38066, South Korea
[3] Rajasthan Tech Univ, Dept HEAS Math, Kota 324010, India
来源
关键词
Generalized Hurwitz-Lerch Zeta function; Extended beta function; Extended hypergeometric function; Extended Hurwitz-Lerch Zeta function; Mellin transform; Extended fractional derivative operator; GENERATING RELATIONS; FEYNMAN-INTEGRALS; EXTENSION; BETA;
D O I
10.5269/bspm.v37i1.31842
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently various extensions of Hurwitz-Lerch Zeta functions have been investigated. Here, we first introduce a further generalization of the extended Hurwitz-Lerch Zeta functions. Then we investigate certain interesting and (potentially) useful properties, systematically, of the generalization of the extended Hurwitz-Lerch Zeta functions, for example, various integral representations, Mellin transform, generating functions and extended fractional derivatives formulas associated with these extended generalized Hurwitz-Lerch Zeta functions. An application to probability distributions is further considered. Some interesting special cases of our main results are also pointed out.
引用
收藏
页码:177 / 190
页数:14
相关论文
共 50 条
  • [1] A generalization of the Hurwitz-Lerch Zeta function
    Choi, Junesang
    Jang, Douk Soo
    Srivastava, H. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (01) : 65 - 79
  • [2] On extended Hurwitz-Lerch zeta function
    Luo, Min-Jie
    Parmar, Rakesh Kumar
    Raina, Ravinder Krishna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1281 - 1304
  • [3] AN EXTENSION OF THE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS OF TWO VARIABLES
    Choi, Junesang
    Parmar, Rakesh K.
    Saxena, Ram K.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (06) : 1951 - 1967
  • [4] A note on extended Hurwitz-Lerch Zeta function
    Ghayasuddin, M.
    Khan, N. U.
    Khan, Waseem A.
    Ahmad, Moin
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 82 - 89
  • [5] Further results involving a class of generalized Hurwitz-Lerch zeta functions
    H. M. Srivastava
    S. Gaboury
    B. -J. Fugère
    Russian Journal of Mathematical Physics, 2014, 21 : 521 - 537
  • [6] Further Results Involving a Class of Generalized Hurwitz-Lerch Zeta Functions
    Srivastava, H. M.
    Gaboury, S.
    Fugere, B. -J.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2014, 21 (04) : 521 - 537
  • [7] Real zeros of Hurwitz-Lerch zeta and Hurwitz-Lerch type of Euler-Zagier double zeta functions
    Nakamura, Takashi
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 160 (01) : 39 - 50
  • [8] Hurwitz-Lerch zeta and Hurwitz-Lerch type of Euler-Zagier double zeta distributions
    Nakamura, Takashi
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2016, 19 (04)
  • [9] Some formulas related to Hurwitz-Lerch zeta functions
    Nakamura, Takashi
    RAMANUJAN JOURNAL, 2010, 21 (03): : 285 - 302
  • [10] On the new bicomplex generalization of Hurwitz-Lerch zeta function with properties and applications
    Chandola, Ankita
    Pandey, Rupakshi Mishra
    Nisar, Kottakkaran Sooppy
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2023, 43 (02): : 71 - 88