Homoclinic saddle to saddle-focus transitions in 4D systems

被引:2
|
作者
Kalia, Manu [1 ]
Kuznetsov, Yuri A. [1 ,2 ]
Meijer, Hil G. E. [1 ]
机构
[1] Univ Twente, Dept Appl Math, Zilverling Bldg,POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Utrecht, Math Inst, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
关键词
homoclinic bifurcations; numerical bifurcation analysis; bifurcation theory; ACOUSTIC-GRAVITY WAVES; EXPONENTIAL EXPANSION; BIFURCATION-ANALYSIS; EXISTENCE; SET;
D O I
10.1088/1361-6544/ab0041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A saddle to saddle-focus homoclinic transition when the stable leading eigenspace is three-dimensional (called the 3DL bifurcation) is analyzed. Here a pair of complex eigenvalues and a real eigenvalue exchange their position relative to the imaginary axis, giving rise to a 3D stable leading eigenspace at the critical parameter values. This transition is different from the standard Belyakov bifurcation, where a double real eigenvalue splits either into a pair of complex-conjugate eigenvalues or two distinct real eigenvalues. In the wild case, we obtain sets of codimension 1 and 2 bifurcation curves and points that asymptotically approach the 3DL bifurcation point and have a structure that differs from that of the standard Belyakov case. We give an example of this bifurcation in a perturbed Lorenz-Stenflo 4D ordinary differential equation model.
引用
收藏
页码:2024 / 2054
页数:31
相关论文
共 50 条