Building Linked Spatio-Temporal Data from Vectorized Historical Maps

被引:10
|
作者
Shbita, Basel [1 ,2 ]
Knoblock, Craig A. [1 ,2 ]
Duan, Weiwei [2 ,3 ]
Chiang, Yao-Yi [2 ,3 ]
Uhl, Johannes H. [4 ]
Leyk, Stefan [4 ]
机构
[1] Univ Southern Calif, Informat Sci Inst, Los Angeles, CA 90007 USA
[2] Univ Southern Calif, Dept Comp Sci, Los Angeles, CA 90007 USA
[3] Univ Southern Calif, Spatial Sci Inst, Los Angeles, CA 90007 USA
[4] Univ Colorado, Dept Geog, Boulder, CO 80309 USA
来源
SEMANTIC WEB (ESWC 2020) | 2020年 / 12123卷
基金
美国国家科学基金会;
关键词
Linked spatio-temporal data; Historical maps; Knowledge graphs; Semantic web;
D O I
10.1007/978-3-030-49461-2_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Historical maps provide a rich source of information for researchers in the social and natural sciences. These maps contain detailed documentation of a wide variety of natural and human-made features and their changes over time, such as the changes in the transportation networks and the decline of wetlands. It can be labor-intensive for a scientist to analyze changes across space and time in such maps, even after they have been digitized and converted to a vector format. In this paper, we present an unsupervised approach that converts vector data of geographic features extracted from multiple historical maps into linked spatio-temporal data. The resulting graphs can be easily queried and visualized to understand the changes in specific regions over time. We evaluate our technique on railroad network data extracted from USGS historical topographic maps for several regions over multiple map sheets and demonstrate how the automatically constructed linked geospatial data enables effective querying of the changes over different time periods.
引用
收藏
页码:409 / 426
页数:18
相关论文
共 50 条
  • [1] Building spatio-temporal knowledge graphs from vectorized topographic historical maps
    Shbita, Basel
    Knoblock, Craig A.
    Duan, Weiwei
    Chiang, Yao-Yi
    Uhl, Johannes H.
    Leyk, Stefan
    [J]. SEMANTIC WEB, 2023, 14 (03) : 527 - 549
  • [2] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [3] Mining Spatio-temporal Data on Industrialization from Historical Registries
    Berenbaum, D.
    Deighan, D.
    Marlow, T.
    Lee, A.
    Frickel, S.
    Howison, M.
    [J]. JOURNAL OF ENVIRONMENTAL INFORMATICS, 2019, 34 (01) : 28 - 34
  • [4] Indexing Historical Spatio-Temporal Data in the Cloud
    Zhang, Chong
    Chen, Xiaoying
    Ge, Bin
    Xiao, Weidong
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 1765 - 1774
  • [5] Creating Spatio-temporal Spectrum Maps from Sparse Crowdsensed Data
    Rahman, Md Shaifur
    Gupta, Himanshu
    Chakraborty, Ayon
    Das, Samir
    [J]. 2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [6] DISCOVERING AND LINKING SPATIO-TEMPORAL BIG LINKED DATA
    Zinke, Christian
    Ngomo, Axel-Cyrille Ngonga
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 411 - 414
  • [7] Exploratory spatio-temporal analysis of linked statistical data
    Mijovic, Vuk
    Janev, Valentina
    Paunovic, Dejan
    Vranes, Sanja
    [J]. JOURNAL OF WEB SEMANTICS, 2016, 41 : 1 - 8
  • [8] Historical spatio-temporal aggregation
    Tao, Y
    Papadias, D
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2005, 23 (01) : 61 - 102
  • [9] Shifted Maps: Revealing spatio-temporal topologies in movement data
    Otten, Heike
    Hildebrand, Lennart
    Nagel, Till
    Doerk, Marian
    Mueller, Boris
    [J]. PROCEEDINGS OF THE IEEE VIS ARTS PROGRAM (VISAP) 2018, 2018,
  • [10] Extraction of spatio-temporal data about historical events from text documents
    Abraham, Susanna
    Maes, Stephan
    Bernard, Lars
    [J]. TRANSACTIONS IN GIS, 2018, 22 (03) : 677 - 696