A degenerate parabolic-hyperbolic Cauchy problem with a stochastic force

被引:31
|
作者
Bauzet, Caroline
Vallet, Guy [1 ]
Wittbold, Petra [2 ]
机构
[1] CNRS, LMAP, UMR 5142, F-64013 Pau, France
[2] Fak Math, D-45141 Essen, Germany
关键词
Stochastic PDE; degenerate parabolic-hyperbolic equation; Cauchy problem; multiplicative stochastic perturbation; Carrillo-Kruzhkov's entropy;
D O I
10.1142/S0219891615500150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in the Cauchy problem for a nonlinear degenerate parabolic-hyperbolic problem with multiplicative stochastic forcing. Using an adapted entropy formulation a result of existence and uniqueness of a solution is proven.
引用
收藏
页码:501 / 533
页数:33
相关论文
共 50 条
  • [1] A fractional degenerate parabolic-hyperbolic Cauchy problem with noise
    Bhauryal, Neeraj
    Koley, Ujjwal
    Vallet, Guy
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 284 : 433 - 521
  • [2] The Cauchy problem for a class of nonlinear degenerate parabolic-hyperbolic equations
    Chen, Hua
    Zhan, Jinpeng
    Hu, Xin
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (05) : 839 - 852
  • [3] The Cauchy problem for a class of nonlinear degenerate parabolic-hyperbolic equations
    Hua Chen
    Jinpeng Zhan
    Xin Hu
    Science China Mathematics, 2019, 62 : 839 - 852
  • [4] The Cauchy problem for a class of nonlinear degenerate parabolic-hyperbolic equations
    Hua Chen
    Jinpeng Zhan
    Xin Hu
    Science China(Mathematics), 2019, 62 (05) : 839 - 852
  • [5] On the Cauchy problem of a degenerate parabolic-hyperbolic PDE with Levy noise
    Biswas, Imran H.
    Majee, Ananta K.
    Vallet, Guy
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 809 - 844
  • [6] Uniqueness of the entropy solutions to Cauchy problem for a degenerate parabolic-hyperbolic equation
    Hao, Xing-Wen
    Wang, Qin
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (07): : 1085 - 1090
  • [7] A boundary value problem for a class of anisotropic stochastic degenerate parabolic-hyperbolic equations
    Frid, Hermano
    Li, Yachun
    Marroquin, Daniel
    Nariyoshi, Joao F. C.
    Zeng, Zirong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (09)
  • [8] CAUCHY-PROBLEM FOR SOME PARABOLIC-HYPERBOLIC EQUATIONS
    VRAGOV, VN
    DOKLADY AKADEMII NAUK SSSR, 1973, 212 (03): : 536 - 539
  • [9] Stochastic non-isotropic degenerate parabolic-hyperbolic equations
    Gess, Benjamin
    Souganidis, Panagiotis E.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (09) : 2961 - 3004
  • [10] Nonlinear anisotropic degenerate parabolic-hyperbolic equations with stochastic forcing
    Chen, Gui-Qiang G.
    Pang, Peter H. C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (12)