The abstract theory of boundary triples is applied to the classical Jacobi differential operator and its powers in order to obtain the Weyl m-function for several self-adjoint extensions with interesting bound- ary conditions: separated, periodic and those that yield the Friedrichs extension. These matrix-valued Nevanlinna-Herglotz m-functions are, to the best knowledge of the author, the first explicit examples to stem from singular higher-order differential equations. The creation of the boundary triples involves taking pieces, determined in [26], of the principal and non-principal solutions of the differential equation and putting them into the sesquilinear form to yield maps from the maximal domain to the boundary space. These maps act like quasi-derivatives, which are usually not well-defined for all functions in the maximal domain of singular expressions. However, well- defined regularizations of quasi-derivatives are produced by putting the pieces of the non-principal solutions through a modified Gram-Schmidt process. (c) 2020 Elsevier Inc. All rights reserved.
机构:
Departamento de Matemática Aplicada a la Ingeniería, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Valladolid, E-47011 Valladolid, Paseo del Cauce s/nDepartamento de Matemática Aplicada a la Ingeniería, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Valladolid, E-47011 Valladolid, Paseo del Cauce s/n
Núñez C.
Obaya R.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática Aplicada a la Ingeniería, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Valladolid, E-47011 Valladolid, Paseo del Cauce s/nDepartamento de Matemática Aplicada a la Ingeniería, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Valladolid, E-47011 Valladolid, Paseo del Cauce s/n