Sparse Matrix-Vector Multiplication Cache Performance Evaluation and Design Exploration

被引:0
|
作者
Cui, Jianfeng [1 ]
Lu, Kai [1 ]
Liu, Sheng [2 ]
机构
[1] Natl Univ Def Technol, Sch Comp, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Sci & Technol Parallel & Distributed Proc Lab, Changsha 410073, Hunan, Peoples R China
关键词
SpMV; cache; sparse; matrix; PIN; simulation;
D O I
10.1109/MASCOTS53633.2021.9614301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we conducted a group of evaluations on the SpMV kernel with sequential implementation to investigate cache performance on single-core platforms. We verified a similar pattern inside a suite of sparse matrices covering various domains, which makes cache hit rate extraordinary inspiring in a sequential environment. This implicit regularity drove us to propose a cache space splitting approach, aiming at a better locality in dense vector accessing and utilization of large cache capacity in modern processors. Finally, we explored the design space of cache on Matrix 3000 GPDSP and proposed a group of cache parameters, based on our experimental results.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [1] Performance evaluation of the sparse matrix-vector multiplication on modern architectures
    Georgios Goumas
    Kornilios Kourtis
    Nikos Anastopoulos
    Vasileios Karakasis
    Nectarios Koziris
    [J]. The Journal of Supercomputing, 2009, 50 : 36 - 77
  • [2] Performance evaluation of the sparse matrix-vector multiplication on modern architectures
    Goumas, Georgios
    Kourtis, Kornilios
    Anastopoulos, Nikos
    Karakasis, Vasileios
    Koziris, Nectarios
    [J]. JOURNAL OF SUPERCOMPUTING, 2009, 50 (01): : 36 - 77
  • [3] Sparse matrix-vector multiplication design on FPGAs
    Sun, Junqing
    Peterson, Gregory
    Storaasli, Olaf
    [J]. FCCM 2007: 15TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2007, : 349 - +
  • [4] Understanding the performance of sparse matrix-vector multiplication
    Goumas, Georgios
    Kourtis, Kornilios
    Anastopoulos, Nikos
    Karakasis, Vasileios
    Koziris, Nectarios
    [J]. PROCEEDINGS OF THE 16TH EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, 2008, : 283 - +
  • [5] Performance Aspects of Sparse Matrix-Vector Multiplication
    Simecek, I.
    [J]. ACTA POLYTECHNICA, 2006, 46 (03) : 3 - 8
  • [6] On improving the performance of sparse matrix-vector multiplication
    White, JB
    Sadayappan, P
    [J]. FOURTH INTERNATIONAL CONFERENCE ON HIGH-PERFORMANCE COMPUTING, PROCEEDINGS, 1997, : 66 - 71
  • [7] Performance Evaluation of Multithreaded Sparse Matrix-Vector Multiplication using OpenMP
    Liu, Shengfei
    Zhang, Yunquan
    Sun, Xiangzheng
    Qiu, RongRong
    [J]. HPCC: 2009 11TH IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, 2009, : 659 - +
  • [8] CACHE-OBLIVIOUS SPARSE MATRIX-VECTOR MULTIPLICATION BY USING SPARSE MATRIX PARTITIONING METHODS
    Yzelman, A. N.
    Bisseling, Rob H.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04): : 3128 - 3154
  • [9] Energy Evaluation of Sparse Matrix-Vector Multiplication on GPU
    Benatia, Akrem
    Ji, Weixing
    Wang, Yizhuo
    Shi, Feng
    [J]. 2016 SEVENTH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING CONFERENCE (IGSC), 2016,
  • [10] High performance sparse matrix-vector multiplication on FPGA
    Zou, Dan
    Dou, Yong
    Guo, Song
    Ni, Shice
    [J]. IEICE ELECTRONICS EXPRESS, 2013, 10 (17):