Sparse Distributed Learning Based on Diffusion Adaptation

被引:180
|
作者
Di Lorenzo, Paolo [1 ]
Sayed, Ali H. [2 ]
机构
[1] Univ Roma La Sapienza, DIET, I-00184 Rome, Italy
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Adaptive networks; compressive sensing; diffusion LMS; distributed estimation; sparse vector; LEAST-MEAN-SQUARES; LMS; STRATEGIES; FORMULATION; NETWORKS; SIGNALS; RLS;
D O I
10.1109/TSP.2012.2232663
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes diffusion LMS strategies for distributed estimation over adaptive networks that are able to exploit sparsity in the underlying system model. The approach relies on convex regularization, common in compressive sensing, to enhance the detection of sparsity via a diffusive process over the network. The resulting algorithms endow networks with learning abilities and allow them to learn the sparse structure from the incoming data in real-time, and also to track variations in the sparsity of the model. We provide convergence and mean-square performance analysis of the proposed method and show under what conditions it outperforms the unregularized diffusion version. We also show how to adaptively select the regularization parameter. Simulation results illustrate the advantage of the proposed filters for sparse data recovery.
引用
收藏
页码:1419 / 1433
页数:15
相关论文
共 50 条
  • [1] Sparse Robust Distributed Estimation by Diffusion Adaptation
    Modalavalasa, Sowjanya
    Sahoo, Upendra Kumar
    Sahoo, Ajit Kumar
    Yadav, Ajitesh
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [2] Distributed Spectrum Estimation for Small Cell Networks Based on Sparse Diffusion Adaptation
    Di Lorenzo, Paolo
    Barbarossa, Sergio
    Sayed, Ali H.
    IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (12) : 1261 - 1265
  • [3] Sparse distributed learning based on diffusion minimum generalised rank norm
    Modalavalasa, Sowjanya
    Sahoo, Upendra Kumar
    Sahoo, Ajit Kumar
    IET SIGNAL PROCESSING, 2020, 14 (09) : 683 - 692
  • [4] Sparse Distributed Learning via Heterogeneous Diffusion Adaptive Networks
    Das, Bijit K.
    Chakraborty, Mrityunjoy
    Arenas-Garcia, Jeronimo
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 437 - 440
  • [5] Diffusion Adaptation Strategies for Distributed Optimization and Learning Over Networks
    Chen, Jianshu
    Sayed, Ali H.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 4289 - 4305
  • [6] Sparse diffusion APA for distributed estimation
    Hu, Wei
    Zhan, Fuzhou
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 253 - 256
  • [7] Learning Sparse Masks for Diffusion-Based Image Inpainting
    Alt, Tobias
    Peter, Pascal
    Weickert, Joachim
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 528 - 539
  • [8] SPARSE DIFFUSION LMS FOR DISTRIBUTED ADAPTIVE ESTIMATION
    Di Lorenzo, Paolo
    Barbarossa, Sergio
    Sayed, Ali H.
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3281 - 3284
  • [9] Distributed sparse diffusion estimation based on set membership and affine projection algorithm
    Shiri, Hamid
    Tinati, Mohammad Ali
    Codreanu, Marian
    Daneshvar, Sabalan
    DIGITAL SIGNAL PROCESSING, 2018, 73 : 47 - 61
  • [10] Distributed machine learning and sparse representations
    Obst, Oliver
    NEUROCOMPUTING, 2014, 124 : 1 - 1