Krasnosel'skii-Pokrovskii Hysteresis Model for Magnetic Shape Memory Alloy Actuator

被引:0
|
作者
Zhou Miaolei [1 ]
Han Tingting [1 ]
Zhang Qi [1 ]
机构
[1] Jilin Univ, Coll Commun Engn, Changchun 130022, Peoples R China
关键词
Magnetic shape memory alloy actuator; hysteresis nonlinearity; BP algorithm; Krasnosel'skii-Pokrovskii model; adaptive linear neural network;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Magnetic shape memory alloy actuator have hysteresis characteristics, in order to describe the hysteresis nonlinearity of magnetic shape memory alloy actuator and study the methods of eliminating the hysteresis nonlinearity of magnetic shape memory alloy actuator, the Krasnosel'skii-Pokrovskii (KP) model is firstly established in this paper. Secondly, BP neural network and adaptive linear neural network are applied to identify the density functions of the KP model respectively. Finally, it is obtained that the modeling accuracy of the KP model is 0.37% by BP algorithm and the modeling accuracy of the KP model based on adaptive linear neural network is 0.19% through the simulation results, which prove that the KP model can characterize the hysteresis nonlinearity of magnetic shape memory alloy actuator.
引用
收藏
页码:2206 / 2211
页数:6
相关论文
共 50 条
  • [1] Hysteresis Modeling of Magnetic Shape Memory Alloy Actuator Based on Krasnosel'skii-Pokrovskii Model
    Zhou, Miaolei
    Wang, Shoubin
    Gao, Wei
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [2] Hybrid control of magnetically controlled shape memory alloy actuator based on Krasnosel'skii-Pokrovskii model
    Zhou, Miaolei
    He, Shanbo
    Zhang, Qi
    Ji, Kun
    Hu, Bing
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (01) : 63 - 73
  • [3] Elman Neural Network-Based Identification of Krasnosel'skii-Pokrovskii Model for Magnetic Shape Memory Alloys Actuator
    Xu, Rui
    Zhou, Miaolei
    IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (11)
  • [4] Feedforward-Feedback Hybrid Control for Magnetic Shape Memory Alloy Actuators Based on the Krasnosel'skii-Pokrovskii Model
    Zhou, Miaolei
    Zhang, Qi
    Wang, Jingyuan
    PLOS ONE, 2014, 9 (05):
  • [5] Hysteresis Modeling of Lithium-Silicon Half Cells Using Krasnosel'skii-Pokrovskii Model
    Chayratsami, Pornpimon
    Plett, Gregory L.
    2019 3RD IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2019), 2019, : 462 - 467
  • [6] Modeling of Hysteresis for Piezo-driven Stages using a Rate-dependent Krasnosel'skii-Pokrovskii Model
    Pan, Wei
    Xu, Rui
    Zhou, Miaolei
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 1604 - 1609
  • [7] Adaptive Tracking Control for the Piezoelectric Actuated Stage Using the Krasnosel'skii-Pokrovskii Operator
    Xu, Rui
    Tian, Dapeng
    Wang, Zhongshi
    MICROMACHINES, 2020, 11 (05)
  • [8] Modified KP Model for Hysteresis of Magnetic Shape Memory Alloy Actuator
    Zhou, Miaolei
    He, Shanbo
    Hu, Bing
    Zhang, Qi
    IETE TECHNICAL REVIEW, 2015, 32 (01) : 29 - 36
  • [9] Neural Network Model for Hysteresis Non linearity of Magnetic Shape Memory Alloy Actuator
    Zhou, Miaolei
    Wang, Shoubin
    Gao, Wei
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (12) : 2931 - 2935
  • [10] Parameters Identification of Krasnosel'skii-Pokrovskii Model for Piezo-actuated Stages Using a Modified Bat Optimization Algorithm based on Levy Fights Trajectory
    Xu, Rui
    Zhou, Miaolei
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 5304 - 5309