On a Unique Ergodicity of Some Markov Processes

被引:11
|
作者
Kapica, Rafal [1 ,3 ]
Szarek, Tomasz [2 ,4 ]
Sleczka, Maciej [3 ]
机构
[1] Univ Silesia, Inst Math, Bankowa 14, PL-40007 Katowice, Poland
[2] Univ GdaAsk, Inst Math, Wita Stwosza 57, GdaAsk, Poland
[3] Univ Silesia, Inst Math, PL-40007 Katowice, Poland
[4] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
关键词
Ergodicity of Markov families; Invariant measures; Stochastic heat equations; STRONG FELLER PROPERTY;
D O I
10.1007/s11118-011-9242-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the sufficient condition for the uniqueness of an invariant measure for Markov processes with the strong asymptotic Feller property formulated by Hairer and Mattingly (Ann Math 164(3):993-1032, 2006) entails the existence of at most one invariant measure for e-processes as well. Some application to time-homogeneous Markov processes associated with a nonlinear heat equation driven by an impulsive noise is also given.
引用
收藏
页码:589 / 606
页数:18
相关论文
共 50 条
  • [1] On a Unique Ergodicity of Some Markov Processes
    Rafał Kapica
    Tomasz Szarek
    Maciej Ślȩczka
    [J]. Potential Analysis, 2012, 36 : 589 - 606
  • [2] ON ERGODICITY OF SOME MARKOV PROCESSES
    Komorowski, Tomasz
    Peszat, Szymon
    Szarek, Tomasz
    [J]. ANNALS OF PROBABILITY, 2010, 38 (04): : 1401 - 1443
  • [3] On the Ergodicity of some Continuous-Time Markov Processes*
    Elesin M.A.
    Kuznetsov A.V.
    Zeifman A.I.
    [J]. Journal of Mathematical Sciences, 2014, 196 (1) : 43 - 49
  • [5] Shift ergodicity for stationary Markov processes
    [J]. 2001, Science in China Press (44):
  • [6] Exponential and uniform ergodicity of Markov processes
    Down, D
    Meyn, SP
    Tweedie, RL
    [J]. ANNALS OF PROBABILITY, 1995, 23 (04): : 1671 - 1691
  • [7] Shift ergodicity for stationary Markov processes
    陈金文
    [J]. Science in China,SerA., 2001, Ser.A.2001 (11) : 1373 - 1380
  • [8] Shift ergodicity for stationary Markov processes
    Chen, JW
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (11): : 1373 - 1380
  • [9] Subgeometric ergodicity of strong Markov processes
    Fort, G
    Roberts, GO
    [J]. ANNALS OF APPLIED PROBABILITY, 2005, 15 (02): : 1565 - 1589
  • [10] EXPONENTIAL ERGODICITY IN MARKOV RENEWAL PROCESSES
    TEUGELS, JL
    [J]. JOURNAL OF APPLIED PROBABILITY, 1968, 5 (02) : 387 - &