Stacking fault energy prediction for austenitic steels: thermodynamic modeling vs. machine learning

被引:23
|
作者
Wang, Xin [1 ]
Xiong, Wei [1 ]
机构
[1] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Phys Met & Mat Design Lab, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
Machine learning; stacking fault energy; austenitic steels; calphad; INDUCED PLASTICITY STEELS; X-RAY-DIFFRACTION; TEMPERATURE-DEPENDENCE; MECHANICAL-PROPERTIES; STAINLESS-STEELS; DEFORMATION MICROSTRUCTURE; DRIVING-FORCE; NITROGEN; MN; TWIP;
D O I
10.1080/14686996.2020.1808433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Stacking fault energy (SFE) is of the most critical microstructure attribute for controlling the deformation mechanism and optimizing mechanical properties of austenitic steels, while there are no accurate and straightforward computational tools for modeling it. In this work, we applied both thermodynamic modeling and machine learning to predict the stacking fault energy (SFE) for more than 300 austenitic steels. The comparison indicates a high need of improving low-temperature CALPHAD (CALculation of PHAse Diagrams) databases and interfacial energy prediction to enhance thermodynamic model reliability. The ensembled machine learning algorithms provide a more reliable prediction compared with thermodynamic and empirical models. Based on the statistical analysis of experimental results, only Ni and Fe have a moderate monotonic influence on SFE, while many other elements exhibit a complex effect that their influence on SFE may change with the alloy composition.
引用
收藏
页码:626 / 634
页数:9
相关论文
共 50 条
  • [1] Thermodynamic modeling of the stacking fault energy of austenitic steels
    Curtze, S.
    Kuokkala, V. -T.
    Oikari, A.
    Talonen, J.
    Hanninen, H.
    [J]. ACTA MATERIALIA, 2011, 59 (03) : 1068 - 1076
  • [2] Stacking fault energy of cryogenic austenitic steels
    Dai, QX
    Wang, AD
    Cheng, XN
    Luo, XM
    [J]. CHINESE PHYSICS, 2002, 11 (06): : 596 - 600
  • [3] TWIN FREQUENCY AND STACKING FAULT ENERGY IN AUSTENITIC STEELS
    SILCOCK, JM
    ROOKES, RW
    BARFORD, J
    [J]. JOURNAL OF THE IRON AND STEEL INSTITUTE, 1966, 204 : 623 - &
  • [4] Stacking fault energy and magnetism in austenitic stainless steels
    Vitos, L.
    Korzhavyi, P. A.
    Nilsson, J-O
    Johansson, B.
    [J]. PHYSICA SCRIPTA, 2008, 77 (06)
  • [5] Effect of Carbon and Nitrogen on the Stacking Fault Energy in Austenitic Steels
    Blinov, V. M.
    Glezer, A. M.
    Bannykh, I. O.
    Lukin, E. I.
    Blinova, E. N.
    Bannykh, O. A.
    Blinov, E. V.
    Chernogorova, O. P.
    Samoilova, M. A.
    Chernenok, D. V.
    [J]. RUSSIAN METALLURGY, 2022, 2022 (04): : 347 - 354
  • [6] STACKING-FAULT ENERGY IN AUSTENITIC STAINLESS-STEELS
    RHODES, CG
    THOMPSON, AW
    [J]. JOM-JOURNAL OF METALS, 1976, 28 (12): : A39 - A39
  • [7] The deformation of low-stacking-fault-energy austenitic steels
    Karaman, I.
    Sehitoglu, H.
    Chumlyakov, Y.I.
    Maier, H.J.
    [J]. JOM, 2002, 54 (07) : 31 - 37
  • [8] The deformation of low-stacking-fault-energy austenitic steels
    I. Karaman
    H. Sehitoglu
    Y. I. Chumlyakov
    H. J. Maier
    [J]. JOM, 2002, 54 : 31 - 37
  • [9] Effect of Carbon and Nitrogen on the Stacking Fault Energy in Austenitic Steels
    V. M. Blinov
    A. M. Glezer
    I. O. Bannykh
    E. I. Lukin
    E. N. Blinova
    O. A. Bannykh
    E. V. Blinov
    O. P. Chernogorova
    M. A. Samoilova
    D. V. Chernenok
    [J]. Russian Metallurgy (Metally), 2022, 2022 : 347 - 354
  • [10] Prediction and Rational Design of Stacking Fault Energy of Austenitic Alloys Based on Interpretable Machine Learning and Chemical Composition
    Liu, Chengcheng
    Su, Hang
    [J]. STEEL RESEARCH INTERNATIONAL, 2024, 95 (08)